The Forest Molecular Genetics (FMG) Programme, headed by Prof Zander Myburg, is based at the University of Pretoria's Department of Genetics and is affiliated with the Forestry and Agricultural Biotechnology Institute (FABI). Our research focuses on the genetic control of wood development in fast-growing plantation trees, primarily Eucalyptus and tropical pines grown in South Africa. We utilise a number of research and technology platforms, namely: tree genomics; high-throughput DNA marker analysis; functional genetics; as well as wood pheno­typing. We work in close collaboration with South African forestry companies, such as Sappi and Mondi, to develop capacity and resources for the application of tree biotechnology in operational tree improvement programmes. This research is supported by grants from the National Research Foundation (NRF), the Tech­nology and Human capacity for Industry Programme (THRIP) and the Department of Science and Technology (DST) of South Africa.

Current projects include:

  1. Population Genomics - Genomic mapping of growth and wood quality traits in Eucalyptus hybrids, genome-wide SNP marker discovery and genotyping in Eucalyptus, and system genetics analysis of cellulose and xylan biosynthesis in Eucalyptus;
  2. Functional Genomics - Carbohydrate active enzyme (CAZyme) genes involved in wood formation in Eucalyptus, and transcriptome-wide prediction of xylem proteome variation in Eucalyptus;
  3. Functional Genetics - Functional analysis of secondary cell wall (SCW) transcriptional network in Eucalyptus, and functional genetics of the SCW related proteins of unknown function.

 

FMG Brochure 2015 Edition

 

New Publications

Roodt D, Li Z, Van de Peer Y, Mizrachi E. (2019) Loss of wood formation genes in monocot genomes. Genome Biology and Evolution :evz115. https://bit.ly/2WvIe8V
Naidoo S, Slippers B, Plett JM, Coles D, Oates CN. (2019) The road to resistance in forest trees. Frontiers in Plant Science 10:273. 10.3389/fpls.2019.00273
van der Nest MA, Wingfield MJ, McTaggart AR, Van Wyk S, De Vos L, Trollip C, Santana QC, Naidoo K, Dong TA, Wilken PM, Chan W-Y, Palmer M, Soal NA, Roodt D, Steenkamp ET, Wingfield BD. (2019) Genomic analysis of the aggressive tree pathogen Ceratocystis albifundus. Fungal Biology 10.1016/j.funbio.2019.02.002 PDF
Backer R, Naidoo S, van den Berg N. (2019) The NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1) and Related Family: Mechanistic Insights in Plant Disease Resistance. Frontiers in Plant Science 10:102. 10.3389/fpls.2019.00102
Pinard D, Myburg AA, Mizrachi E. (2019) The plastid and mitochondrial genomes of Eucalyptus grandis. BMC Genomics 20(132):1-14. 10.1186/s12864-019-5444-4 PDF
Pinard D, Fierro AC, Marchal K, Myburg AA, Mizrachi E. (2019) Organellar carbon metabolism is co-ordinated with distinct developmental phases of secondary xylem. New Phytologist 10.1111/nph.15739
Hussey SG, Grima-Pettenati J, Myburg AA, Mizrachi E, Brady SM, Yoshikuni Y, Deutsch S. (2019) A standardized synthetic Eucalyptus transcription factor and promoter panel for re-engineering secondary cell wall regulation in biomass and bioenergy crops. ACS Synthetic Biology 8(2):463-465. 10.1021/acssynbio.8b00440
McTaggart AR, Duong TA, Le VQ, Shuey LS, Smidt W, Naidoo S, Wingfield MJ, Wingfield BD. (2018) Chromium sequencing: the doors open for genomics of obligate plant pathogens. BioTechniques 65(5):253-257. 10.2144/btn-2018-0019
Laubscher M, Brown K, Tonfack LB, Myburg AA, Mizrachi E, Hussey SG. (2018) Temporal analysis of Arabidopsis genes activated by Eucalyptus grandis NAC transcription factors associated with xylem fibre and vessel development. Scientific Reports 8:10983. 10.1038/s41598-018-29278-w
Naidoo S, Christie N, Acosta JJ, Mphahlele MM, Payn KG, Myburg AA, Külheim C. (2018) Terpenes associated with resistance against the gall wasp, Leptocybe invasa, in Eucalyptus grandis. Plant, Cell & Environment 41(8):1840-1851. 10.1111/pce.13323