
ISPRS Journal of Photogrammetry and Remote Sensing 88 (2014) 48–59
Contents lists available at ScienceDirect

ISPRS Journal of Photogrammetry and Remote Sensing

journal homepage: www.elsevier .com/ locate/ isprs jprs
Detecting Sirex noctilio grey-attacked and lightning-struck pine trees
using airborne hyperspectral data, random forest and support vector
machines classifiers
0924-2716/$ - see front matter � 2013 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) Published by Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.isprsjprs.2013.11.013

⇑ Corresponding author at: School of Agriculture, Earth and Environmental
Sciences, Pietermaritzburg Campus, University of KwaZulu-Natal, Scottsville P/Bag
X01, Pietermaritzburg 3209, South Africa. Tel.: +27 738799363; fax: +27 33
2605344.

E-mail address: elfatihabdelrahman@gmail.com (E.M. Abdel-Rahman).
Elfatih M. Abdel-Rahman a,b,⇑, Onisimo Mutanga a, Elhadi Adam a, Riyad Ismail a

a School of Agriculture, Earth and Environmental Sciences, Pietermaritzburg Campus, University of KwaZulu-Natal, Scottsville P/Bag X01, Pietermaritzburg 3209, South Africa
b Department of Agronomy, Faculty of Agriculture, University of Khartoum, Khartoum North 13314, Sudan

a r t i c l e i n f o a b s t r a c t
Article history:
Received 22 May 2013
Received in revised form 24 November 2013
Accepted 27 November 2013
Available online 20 December 2013

Keywords:
Sirex grey stage
Lighting damage
Pinus spp.
Hyperspectral data
Random forest
Support vector machines
The visual progression of sirex (Sirex noctilio) infestation symptoms has been categorized into three
distinct infestation phases, namely the green, red and grey stages. The grey stage is the final stage which
leads to almost complete defoliation resulting in dead standing trees or snags. Dead standing pine trees
however, could also be due to the lightning damage. Hence, the objective of the present study was to
distinguish amongst healthy, sirex grey-attacked and lightning-damaged pine trees using AISA Eagle
hyperspectral data, random forest (RF) and support vector machines (SVM) classifiers. Our study also pre-
sents an opportunity to look at the possibility of separating amongst the previously mentioned pine trees
damage classes and other landscape classes on the study area. The results of the present study revealed
the robustness of the two machine learning classifiers with an overall accuracy of 74.50% (total disagree-
ment = 26%) for RF and 73.50% (total disagreement = 27%) for SVM using all the remaining AISA Eagle
spectral bands after removing the noisy ones. When the most useful spectral bands as measured by RF
were exploited, the overall accuracy was considerably improved; 78% (total disagreement = 22%) for RF
and 76.50% (total disagreement = 24%) for SVM. There was no significant difference between the perfor-
mances of the two classifiers as demonstrated by the results of McNemar’s test (chi-squared; v2 = 0.14,
and 0.03 when all the remaining ASIA Eagle wavebands, after removing the noisy ones and the most
important wavebands were used, respectively). This study concludes that AISA Eagle data classified using
RF and SVM algorithms provide relatively accurate information that is important to the forest industry for
making informed decision regarding pine plantations health protocols.
� 2013 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) Published by Elsevier

B.V. All rights reserved.
1. Introduction

The invasive woodwasp, Sirex noctilio Fabricius (Hymenoptera,
Siricidae), has caused widespread damage to South African
commercial Pinus species. The parasite’s highest impact is in the
province of KwaZulu-Natal with a 6% infestation rate (Hurley
et al., 2007). Mitigation measurements introduced in KwaZulu-Na-
tal have to date yielded inaccurate S. noctilio management strate-
gies (Hurley et al., 2008). Consequently, detection and
monitoring of the wasp is still considered a vital protocol in the
identification of remediation sites. Currently, methods
implemented for the spatial identification and quantification of S.
noctilio infestations include broad scale visual aerial reconnais-
sance (Carnegie et al., 2005) and field based enumerations (Ismail
et al., 2006). Researchers have recently advocated utilizing
remotely-sensed data for the detection and mapping of damage
caused by S. noctilio (Dye et al., 2008; Ismail et al., 2007, 2008).
These studies focused on correlating the visual symptoms of S. noc-
tilio infestations with high spectral and spatial resolution remo-
tely-sensed data.

In line with other studies, the visual progression of S. noctilio
infestation symptoms has been categorized into three distinct
infestation phases, namely the green, red and grey stages (Coops
et al., 2006; Ismail et al., 2007). The initial green stage is evidenced
by the appearance of resin droplets on the trunk (Ciesla, 2003;
Tribe and Cillié, 2004) and the tree canopy still appears green
and healthy and there is minimal needle loss. The red stage is
characterized by turning the color of the tree canopy from green
to reddish brown (Corley et al., 2007). The final stage is referred
to as the grey stage. Round exit holes appear on the trunk and nee-
dle fall occurs, leading to almost complete defoliation resulting in a
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dead standing tree or snag (Neumann and Minko, 1981). Existing S.
noctilio damage detection and mapping studies utilizing remotely-
sensed data have focused primarily on the green and red damage
stages (Dye et al., 2008; Ismail et al., 2006, 2007). However, there
are operational limitations that restrict the successful detection
and mapping of green and red stages of attack. Coutts (1969)
showed that Pinus radiata trees can start to transform from the
healthy to the red stage within two weeks after the wasp intro-
duces mucus and fungus into the tree. Subsequently there is needle
loss with complete senescence and splitting of the bark in P. radiata
within three months (Spradbery, 1973). This relatively small bio-
window makes the acquisition and processing of the remotely-
sensed data required to quantify the total mortality associated
with S. noctilio infestations challenging. Additionally, S. noctilio
emerges from infested trees between October and January peaking
in November in KwaZulu-Natal (Hurley et al., 2008), with chlorosis
visible in late December and early January. The spring and summer
period for the eastern parts of South Africa is characterized by hea-
vy rainfall, particularly between November and February (Schulze
and Maharaj, 1997; Schulze et al., 1997) making the acquisition of
cloud free remotely-sensed data difficult. Consequently, this study
proposes mapping the grey stage of infestation in order to provide
a more complete quantification of the damage caused by the wasp.
It is envisaged that grey stage mapping will overcome current
operational limitations because (i) the grey stage of infestation is
prevalent over a longer period of time (i.e. from May till Septem-
ber) corresponding with the drier winter months, thus allowing
for relatively easier acquisition of cloud free imagery, (ii) and more
accurate correspondence between the field surveys and image data
is possible, and (iii) tree damage will also be easier to associate
symptomatically with the wasp due to the presence of exit holes
after emergence, which is more readily visible than resin droplets
and ovipositors required for the field verification of the green stage
of infestation.

However, detection and mapping of pine trees of grey stage of
attack is not without challenges because snags could also be a re-
sult of other pine damaging agents. For example, pine trees struck
by lightning show similar visual symptoms of damage to grey stage
trees. From a pest management perspective there is a need to dif-
ferentiate between pine trees that are damaged by sirex and those
struck by lightning.

According to Marcus et al. (2002) further investigation into the
identification of dead wood, using hyperspectral and hyperspatial
remotely-sensed data is required. Unlike the broadband multispec-
tral data, the narrow band contiguous hyperspectral data provide
information about vegetation biochemical makeup and can there-
fore be useful in detecting any biophysiological changes in a tree
foliage or wood due to abiotic and/or biotic stressing factor (Goetz,
2009; Kumar et al., 2003). On the other hand, the increased spatial
resolution of aerial imagery offers more finely spatial detail of po-
tential use in tree-level studies (Meddens et al., 2011). Pasher and
King (2009) utilized fine spatial multispectral aerial image data for
mapping dead wood in natural forest. They successfully detected
canopy-level dead wood objects with an accuracy of 94%. Notwith-
standing, the study of Marcus et al. (2002) was unsuccessful to
map forest woody debris because the multispectral aerial image
employed could not provide the ideal spatial resolution for distin-
guishing the narrow woods from their surrounding objects.

The sheer volume and basic nature of hyperspectral data has
necessitated the development of specific hyperspectral processing
procedures (Lillesand and Kiefer, 2001). While numerous super-
vised classification methods have been developed and successfully
implemented on multispectral data, these methods are not effec-
tive when dealing with hyperspectral data sets due to the high
number of spectral bands. The main difficulty with hyperspectral
data is the over-fitting ‘‘Hughes phenomenon’’ also known as the
curse of dimensionality (Hughes, 1968). With hyperspectral data,
as the number of spectral bands increases, the size of the required
training samples for a specific classifier increases exponentially as
well (Hsu, 2007). Recently, a number of machine learning ap-
proaches have been utilized to analyze the multidimensional
hyperspectral data. Random forest (RF) (Breiman, 2001) and sup-
port vector machines (SVM) (Cortes and Vapnik, 1995) are well
known machine learning algorithms that perform excellent in
reducing the complexity of ill-posed classification problems associ-
ated with hyperspectral data (Adam et al., 2012; Bandos et al.,
2009; Plaza et al., 2009; Sesnie et al., 2010; Waske et al., 2009).
It has been argued that RF and SVM are both suited to hyperspec-
tral image classification as these algorithms can deal with large in-
put spaces, handle noisy datasets efficiently and produce fair
classification accuracies (Camps-Valls and Bruzzone, 2005). The
performance of the two classifiers has been compared for classify-
ing various land forms using hyperspectral data (e.g., Pal, 2005;
Sesnie et al., 2010; Waske et al., 2009). Different results were ob-
tained and the superiority of either RF or SVM was controversial.
To the best of our knowledge no study has compared the capabil-
ities of RF and SVM for detecting pine snags. The evaluation of the
performance of the two classifiers for identifying pine trees of sirex
grey infestation and those struck by lightning is needed. Hence, the
objective of the present study was to examine the utility of RF and
SVM for discriminating between sirex grey stage and lightning
damaged pine trees using AISA Eagle hyperspectral data. Our study
also presents an opportunity to look at the possibility of separating
sirex and lightning damage classes and other landscape classes in
the study area, namely Eucalyptus spp., Acacia spp., bugweed, bare
soil, and shadow.
2. Methodology

2.1. Study area

The study was conducted at the Hodgsons Sappi plantation area
(latitude 29.227�S and longitude 30.499�E) near Greytown which is
located in the province of KwaZulu-Natal, South Africa (Fig. 1).
Hodgsons is a mountainous area with elevation ranges from
1030 to 1590 m above sea level. The soil in the area is dominated
by apedal and plinthic classes from the ecca group (Sappi, 1993).
The rainy season is during summer (October–February) with an-
nual rainfall ranging from 730 to 1280 mm. As described by Ruth-
erford et al. (2006), the Hodgsons plantation is located within the
midlands mistbelt grassland bioregion of South Africa. Thus, a sig-
nificant amount of additional moisture is present in the area. The
average annual temperature is 15.8 �C. Various Acacia, Eucalyptus
and Pinus trees are present in the study area. However, the domi-
nant species consists of Pinus patula trees that are mainly grown
for pulpwood. Surrounding areas are mainly dominated by Ngong-
oni veld of the Natal mist-belt and Southern tall grassveld (Sappi,
1993). Alien invasive plants are a serious problem in the area, with
bugweed infestations common within the planted compartments
(Dobyn, 2009; So et al., 2002).
2.2. Image acquisition and pre-processing

AISA (Airborne Imaging System for different Applications)
hyperspectral image was acquired for the study area on the 11th
of March, 2009 using the pushbroom Eagle sensor. The image
was acquired during sunny, low wind and clear sky day conditions
at 11:10 am (South Africa local time) at a mean geographical posi-
tion system (GPS) altitude of ca 2.728 km. The image spatial reso-
lution was about 2 m and there were 272 spectral bands ranging



Fig. 1. Location of study area in KwaZulu-Natal (KZN), Province of South Africa.
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from 393.23 to 994.09 nm (VNIR: Visible Near-Infrared) with
bandwidths between 2 to 4 nm.

Atmospheric normalization reduces the effect of the atmo-
spheric noises in the image spectral data. Consequently, the AISA
Eagle image was atmospherically corrected using the quick atmo-
spheric correction (QUAC) algorithm (Bernstein et al., 2005) built
into the Environment for Visualizing Images (ENVI) software
(ENVI, 2006). QUAC is VNIR-SWIR (Shortwave infrared) in-scene-
based atmospheric correction module for multi- and hyperspectral
imagery. It determines the required atmospheric measurements
from the image (pixel spectra) without any ancillary information
(Agrawal and Sarup, 2011) and converts the radiance data to sur-
face relative reference.

The AISA Eagle image was then geometrically registered (Univer-
sal Transverse Mercator projection, zone 36 South) to a color aerial
photograph of high spatial resolution (10 cm) captured in early April
2009 from the same study area using a nearest-neighbour algorithm
and a third-order polynomial transformation method. A pixel root
mean square error less than a pixel (RMSE < 1) was obtained, indi-
cating a good geometric rectification (Ferencz et al., 2004). AISA Ea-
gle reflectance data located after 900 nm were removed and
excluded from the analysis due to high levels of noise associated
with these regions (Dye et al., 2011; So et al., 2002). Therefore, only
230 out of 272 spectral wavebands were analyzed in this study.
2.3. Ground truth data collection

A stratified sampling method was followed for collecting the
reflectance spectra of sirex grey stage pine trees (n = 85). The
hyperspatial 10 cm color aerial photograph was used to identify
sirex grey stage trees with the aid of expert forest specialists from
Sappi Forests (a paper and pulp company) as well as spatial and
timely referenced ancillary datasets. Subsequently, a field cam-
paign was conducted to verify the occurrence of the sirex sample
trees (points) using a GPS with sub-meter accuracy. Additionally
during the field campaign, ground control points (n = 85 for each
class) were also collected from (i) healthy pine trees with similar
ages and (ii) lightning damaged trees that were identified by the
plantation foresters and (iii) additional landuse classes that in-
cluded Eucalyptus spp., Acacia spp., bugweed, bare soil, and shadow.
Reflectance spectra were extracted from the AISA Eagle data using
the collected ground control points and considered as variables
when the classification algorithms were employed.
2.4. Statistical analysis

The utility of random forests (RF) and support vector machines
(SVM) to discriminate sirex grey stage and lightning damaged pine
trees was examined in this paper. The classifiers were trained on
70% (n = 60) of a randomly selected holdout sample and final accu-
racy assessments were determined using the remaining 30% of the
data. The parameters of RF and SVM classifiers were optimized and
then input into Interactive Data Language (IDL)-based ImageRF
(Waske et al., 2012) and ImageSVM (Rabe et al., 2010) tools to
delineate the classes on ASIA Eagle image. These tools are li-
cense-free platforms that can be integrated into commercially-
available IDL/ENVI software and can also be run as add-ons to
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the EnMAP-Box (Held et al., 2012) which is an open-source and
platform-independent software interface for image processing.

2.4.1. Random forest (RF)
The RF ensemble (Breiman, 2001) grows multiple unpruned

trees (ntree) on bootstrap samples of the original data. Each tree
is grown on a bootstrap sample (2/3 of the original data known
as ‘‘in-bag’’ data) taken with replacement from the original data.
Trees are split to many nodes using random subsets of variables
(mtry); the default mtry value is the square root of the total num-
ber of variables. From the mtry selected variables, the variable that
yields the highest decrease in impurity is chosen to split the sam-
ples at each node (Breiman, 2001). A tree is grown to its maximum
size without pruning until the nodes are pure. That is, the nodes
hold samples of the same class or contain certain number of sam-
ples. A prediction of the response variable (e.g., sirex grey stage
trees) is made by aggregating the prediction over all trees (Biau,
2012). In a classification application, a majority vote from all the
trees in the ensemble determines the final prediction (Breiman,
2001). RF is a distribution-free (non-parametric) method that does
not encounter any over-fitting (Hughes phenomenon) problem and
it is robust to outliers and noise (Breiman, 2001). A single tree in RF
is a weak classifier, because a random subset sample is used to
train a tree, while the aggregation from all trees is considered as
a strong classifier. As the variables are randomly selected in each
tree node, a low correlation amongst the trees is expected, and
over-fitting is therefore prevented (Breiman, 2001). A useful by-
product of RF is variables importance which is a measure of the
strength of a variable in the final model. In other words a variable
importance is a metric of how much classification accuracy would
decrease if data of a particular variable are removed while all vari-
ables remain the same (Prasad et al., 2006; Verikas et al., 2011). RF
variable importance is a useful output for gaining better insight of
which variable or a set of variables (e.g., spectral wavebands) are
the most relevant for the classification of the classes. The measure
of classification accuracy is based on an internal estimate known as
‘‘out-of-bag’’ (OOB) error which is calculated from the prediction of
the data that are not used for growing the classification trees (OOB
data are one-third of the original data) (Breiman, 2001). RF algo-
rithm is easy to implement as only two parameters (ntree and
mtry) need to be optimized (Breiman, 2001; Díaz-Uriarte and De
Andres, 2006; Touw et al., 2012). It is recommended that the node
size should be set to its default value (one, for classification) (Liaw
and Wiener, 2002; Ogutu et al., 2011). A more detailed discussion
on RF can be found elsewhere (e.g., Breiman, 2001; Touw et al.,
2012).

The randomForest library (Liaw and Wiener, 2002) of R statisti-
cal packages version 2.15.2 (R Development Core Team, 2012) was
used to optimize RF parameters.

2.4.2. Support vector machines (SVM)
Like RF, Support vector machines (SVM) requires no assumption

about the data distribution (Everingham et al., 2007) and uses very
efficient principles not to over-fit the test or new data samples
(Brown et al., 1999; Burges, 1998; Cortes and Vapnik, 1995).
SVM finds an optimal classification hyperplane through minimiz-
ing the upper bound of the classification error (Cortes and Vapnik,
1995; Vapnik, 1995). Basically, SVM iteratively locates hyperplanes
amongst the training data and thereafter optimizes them according
to error associates with each hyperplane. Hyperplanes are built
from axes that represent each variable (e.g., ASIA Eagle spectral
bands) and exist in a multidimensional space. In a 2-class experi-
ment, the algorithm sets two supporting hyperplanes in the
boundaries and searches to maximize the margin between them.
Data points lying on the supporting hyperplanes are called support
vectors and in the middle of the margin is the optimal hyperplane.
SVM uses slack variables to limit the violation of the restrictions
set by the two supporting hyperplanes. Slack variable is a measure
of how far the outlying sample is on the wrong side of the support-
ing hyperplane that holds the support vectors of its class (Yu et al.,
2012). In addition, SVM attempts to maximize the distance from
the data of each class to the optimum linear hyperplane (Petropo-
ulos et al., 2011). However, most classes are not linearly separable,
hence SVM is tuned for finding a non-linear (e.g., polynomial, ra-
dial etc.) separating hyperplane in a high-dimensional feature
space using a kernel function (Karatzoglou et al., 2006). This is typ-
ically the case for most real world hyperspectral data (Chi and
Bruzzone, 2007; Chi et al., 2008). Polynomial and radial basis ker-
nels are the most commonly used functions for classifying remo-
tely-sensed data (Huang et al., 2002; Oommen et al., 2008). A
radial basis function performs better for classifying remotely-
sensed data when compared with the polynomial kernel and re-
quires optimizing only two parameters (Huang et al., 2008; Kavzo-
glu and Colkesen, 2009; Oommen et al., 2008; Waske and
Benediktsson, 2010). These are the cost ‘‘sigma (C)’’ parameter
which is a value for regularizing the error of misclassifying training
dataset samples, and ‘‘gamma (c)’’ which is the kernel width
parameter. For a multi-class problem, a one-against-one or one-
against-all procedures are followed to run all possible classifiers
and assign the correct class by using a voting mechanism (Kara-
tzoglou et al., 2006; Mazzoni et al., 2007). Interested readers are re-
ferred to, for example, Cortes and Vapnik (1995), Burges (1998),
Karatzoglou et al. (2006), and Mathur and Foody (2008) for com-
prehensive description on SVM theory, principles and mathemati-
cal formulation.

We used all the 230 AISA Eagle bands and a radial basis kernel
function to find an optimal hyperplane that can distinguish
amongst healthy, sirex grey- and lightning-damaged pine trees.
The cost and gamma parameters of the radial basis function were
optimized in order to avoid over-fitting and under-fitting problems
(Karatzoglou et al., 2006; Waske et al., 2009). The one-against-one
scheme was used to implement a multiclass SVM model as recom-
mended by Hsu and Lin (2002) who reported that this strategy is
more symmetric than one-against-all with regard to class sizes.
In addition, the use of a one-against-all scheme does not always
produce a complete classification matrix (Mathur and Foody,
2008). The e1071 library (Meyer, 2001; Meyer et al., 2012) of R sta-
tistical packages version 2.15.2 (R Development Core Team, 2012)
was utilized to optimize the SVM parameters.

2.4.3. Optimizing the random forest and support vector machines
hyperparameters

The aim of the optimization process was to determine the best
parameters for each classifier in order to obtain the best classifica-
tion accuracies. The user defined ntree and mtry for RF and C and c
for SVM were optimized using a grid search and a ten-fold cross
validation method (Waske et al., 2009). That dataset was divided
into ten subsets of equal size, RF and SVM models were then
trained on nine subset samples, and tested on the omitted one
and the process was repeated ten times until all subset samples
have served as test samples. The pair of parameters for each clas-
sifier that minimizes the classification error was then considered
as the best values for final classification. Based on the recommen-
dation of Statnikov et al. (2008) ntree values up to 5000 were con-
sidered using intervals of 500 while a multiplicative factor of the
default mtry was used (for example {1/3, 1/2, 1, 3, 2} ⁄ default
mtry). The default value of mtry is based on the square root of
the 230 AISA Eagle wavebands. With regards to C and c, there
was no stepwise procedure described in the literature concerning
the selection criteria (Carrão et al., 2008; Petropoulos. et al.,
2011). However, we tested exponentially growing sequence of C
and c values (for example 10�3, . . ., 103) as suggested by Hsu
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et al., 2010. On the other hand, Rakotomamonjy (2003) recom-
mended that high C value reduces training error.

2.4.4. Variable selection
We utilized the variable importance as calculated by RF to rank

the 230 AISA Eagle wavebands according to their ability to discrim-
inate amongst healthy, sirex grey- and lightning-damaged pine
trees as well as the other classes considered in this study. Subse-
quently, a forward selection method (Kohavi and John, 1997) was
performed to identify the least number of the spectral bands that
produced the highest classification accuracy. Multiple RFs were
iteratively fitted using the ranked wavebands in a sequential man-
ner. Initially, a new RF model was built using the highest ranked
band and for the next iteration the two highest bands were consid-
ered. This process was repeated until all the spectral variables used
in our study (n = 230) were considered. Finally, the subset of spec-
tral bands that produced the lowest 10-fold cross validated error
was then selected as the optimum subset of spectral bands for
classification.

2.4.5. Accuracy assessment
The accuracy of each classifier was assessed using the 30%

(n = 25) holdout sample. The overall accuracy (OA), user’s accuracy
(UA), and producer’s accuracy (PA) were used as criteria for evalu-
ating the generalization ability (accuracy) of the RF and SVM clas-
sifiers (Tso and Mather, 2009). OA is a ratio (%) between the
number of correctly classified samples and the number of test sam-
ples, while UA represents the likelihood that a sample belongs to
specific class and the classifier accurately assigns it such class. PA
expresses the probability of a certain class being correctly recog-
nized. Two useful parameters were calculated from the cross-tab-
ulation matrices to evaluate the practicability of each classifier.
These are quantity disagreement (QD) and allocation disagreement
(AD) statistical metrics that were recently developed by Pontius
and Millones (2011). The quantity disagreement is the absolute
dissimilarity between the number of reference (test) observations
and the predicted ones, while the allocation disagreement de-
scribes the number of predicted classes that have less than optimal
spatial location in comparison to the reference samples. In addi-
tion, the McNemar’s test was employed to test if there was any sig-
nificant difference between the results of RF and SVM classifiers.
McNemar’s is a nonparametric test based on standardized normal
test statistic calculated from error matrices of the two classifiers as
follows (Foody, 2004; Leeuw et al., 2006):

ð1Þ

where ˜12 denotes the number of samples that are misclassified by
RF but correctly classified by SVM, and ˜21 denotes the number of
samples that are correctly classified by RF but misclassified by
SVM. The Z value could be referred to the tables of chi-squared dis-
tribution with one degree of freedom (Agresti, 1996). McNemar’s
test can therefore be expressed using a chi-squared formula com-
puted as follows:

ð2Þ

If the statistic v2 estimated from Eq. (2) is greater than a chi-
squared table value of 3.84 at 5% level of significance, it implies
that RF and SVM perform significantly different.

Following the calculation of overall and individual accuracies
for all eight classes, we subsequently examined the paired accura-
cies of the healthy, sirex grey stage and lightning damaged pine
trees as our main objective was to look at the possibility of dis-
criminating amongst these classes.
3. Results

3.1. Random forest and support vector machines optimization

When all ASIA Eagle wavebands were used, the optimization re-
sults for RF and SVM using a 10-fold cross validation (CV) method
illustrate that a combination of ntree and mtry of 500 and 45
yielded the minimum CV error (32.91%) for the RF classifier. While
the minimum CV error (24.95%) for the SVM classifier was pro-
duced by c and C values of 0.01 and 100, respectively.

3.2. Spectral bands selection

The importance of AISA Eagle spectral bands in separating
amongst the eight classes and as determined by the RF classifier
is shown in Fig. 2. The most important 50 spectral wavebands
are located in the red edge (670–780 nm), blue (400–500 nm)
and green edge (500–600 nm) of the electromagnetic spectrum,
and very few (only 4) are located at the near infrared (700–
800 nm). The forward selection method selected an optimal 51
spectral bands using the ranking output of RF for discriminating
amongst classes. These 51 spectral wavebands produced a minimal
CV error of 31.91% using the training dataset and 25.50% using the
holdout dataset (Fig. 3). These spectral wavebands were then used
as the optimal input variables for the RF and SVM classification
models.

3.3. Accuracy assessment

Using the 51 bands identified by the forward selection methods
both classifiers were optimized. The results indicate that c = 0.1
and C = 10 produced the best results for SVM while ntree = 500
and mtry = 15 produced the best results for RF.

Figs. 4 and 5 show thematic maps obtained using RF and SVM
classifiers. The main visual difference between the maps is the rel-
atively more homogeneous maps produced when the most impor-
tant 51 AISA Eagle bands were used (Figs. 4a and 5b). On the other
hand, the lightning-struck pine trees are confused with bare soil.
The maps show some sirex-attacked and lightning-struck classes
outside the pine compartments.

The results of the overall accuracy assessment based on the test
data set demonstrated that both machine learning classifiers per-
formed relatively similar and yielded overall accuracy of 74.50%
for RF and 73.50% for SVM using all usable AISA Eagle spectral
bands (Tables 1 and 2). When the subset of 51 spectral bands
was used, the overall accuracy was improved; 78% for RF and
76.50% for SVM (Tables 1 and 2). Moreover, all classification
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(RF). The classification error was calculated from the ten-fold cross validation and
independent data sets. The arrow shows the optimal number of wavebands that
produced the least classification error.
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methods obtained quantity disagreements of 3%, except when SVM
was employed for discriminating amongst the studied classes
using the 230 AISA Eagle bands (Tables 1 and 2). Relatively high
allocation disagreements (19%–23%) were recorded.

When the results of the PA and UA were examined, it was
shown that values of the PA were high for shadow, bare soil,
Fig. 4. Classification maps obtained using random forest classification algor
Eucalyptus spp., lightning-struck trees and bugweed classes irre-
spective of the classifier and AISA Eagle wavebands (Table 3). On
the other hand, all classes obtained fairly high UA, except sirex
grey-attack, Eucalyptus spp., and Acacia spp. classes.

The results of the pairwise comparisons of healthy, sirex grey-
and lightning-damaged pine trees are shown in Figs. 6 and 7. The
overall accuracies of all class pairs were above 90%, except when
sirex grey-attacked and lightning-stuck trees were compared
(86.05%) using the SVM classification algorithm and the 51 most
important AISA Eagle spectral bands. Low disagreements (0–10%)
were obtained by most pairwise comparisons (Figs. 6 and 7).

The difference between the performance of the RF and SVM
classifiers was not significant according to the McNemar’s test
(chi-squared; v2 = 0.14, all the AISA Eagle bands were utilized,
while chi-squared; v2 = 0.03 when the optimal subset of bands
(n = 51) was used). Nonetheless, RF produced the highest OA
(79%) and less quantity (3%) and allocation (19%) disagreements
when the optimal subset of bands (n = 51) was utilized (Table 1).

4. Discussion

The main focus of the present study was to look at the possibil-
ity of distinguishing sirex grey-attacked and lightning-struck pine
trees using airborne hyperspectral data and two machine learning
classifiers, namely RF and SVM. Other classes on the image of the
study area were also classified in order to map the attacked and
ithm, all (a) and the 51 most important (b) AISA Eagle spectral bands.



Fig. 5. Classification maps obtained using support vector machine classification algorithm, all (a) and the 51 most important (b) AISA Eagle spectral bands.

Table 1
Classification confusion matrix of random forest (RF) classifier using 230 and the 51 most important AISA Eagle wavebands for the 30% test data sets.

Class Using 230 AISA eagles wavebands Using the 51 most important AISA eagles wavebands
Ground truth Ground truth

HP SGS LS Eu Aca BW BS Sh Total HP SGS LS Eu Aca BW BS Sh Total

HP 18 00 02 01 03 01 00 00 25 19 02 02 01 01 00 00 00 25
SGS 02 17 01 01 03 01 00 00 25 01 19 01 00 03 01 00 00 25
LS 01 02 18 00 02 02 00 00 25 01 02 20 00 01 01 00 00 25
Eu 01 01 01 18 01 01 00 02 25 01 01 01 19 01 00 00 02 25
Aca 02 02 02 01 17 01 00 00 25 02 02 01 01 17 01 00 01 25
BW 01 01 01 02 00 18 01 01 25 00 00 02 01 00 21 01 00 25
BS 00 00 00 01 01 01 21 01 25 01 00 00 01 00 01 21 01 25
Sh 00 00 00 00 01 01 01 22 25 00 00 00 00 01 01 01 22 25

Total 25 23 25 24 28 26 23 26 200 25 26 27 23 24 26 23 26 200
OA (%) 74.50 79.00
QD (%) 03.00 03.00
AD (%) 23.00 19.00

HP = Healthy pine trees, SGS = Sirex grey stage-damaged pine trees, LS = Lightning strike-damaged pine trees, Eu = Eucalyptus spp., Aca = Acacia spp., BW = Bugweed, BS = Bare
soil, and Sh = Shadow. OA = Overall accuracy, QD = Quantity disagreement, AD = Allocation disagreement.
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lightning-struck trees within different land classes and to produce
a completely classified image. The relatively small overall and indi-
vidual classification errors obtained on this study demonstrated
the capability of the fine spatial and spectral resolutions of the
AISA Eagle sensor to detect pine trees mortality. The confusion of
lightning-struck pine trees with bare soil on the maps (Figs. 4
and 5) could be due to some woody debris laying on the soil of
the compartments that have been recently harvested or left as



Table 2
Classification confusion matrix of support vector machines (SVM) classifier using 230 and the 51 most important AISA Eagle wavebands for the 30% test data sets.

Class Using 230 AISA Eagles wavebands Using the 51 most important AISA Eagles wavebands
Ground truth Ground truth

HP SGS LS Eu Aca BW BS Sh Total HP SGS LS Eu Aca BW BS Sh Total

HP 20 00 01 01 03 00 00 00 25 19 02 00 01 03 00 00 00 25
SGS 01 18 00 02 03 01 00 00 25 02 18 03 00 01 01 00 00 25
LS 02 03 16 01 01 02 00 00 25 02 03 19 00 00 01 00 00 25
Eu 02 02 01 16 02 00 00 02 25 02 00 01 18 03 01 00 00 25
Aca 00 01 01 05 17 01 00 00 25 01 01 01 05 17 00 00 00 25
BW 01 01 01 01 00 20 00 01 25 00 01 03 01 00 20 00 00 25
BS 00 01 00 00 00 01 22 01 25 00 00 00 00 00 02 23 00 25
Sh 00 02 00 00 01 01 03 18 25 00 01 00 00 01 01 03 19 25

Total 26 28 20 26 27 26 25 22 200 26 26 27 25 25 26 26 19 200
OA (%) 73.50 76.50
QD (%) 04.00 03.00
AD (%) 23.00 21.00

HP = Healthy pine trees, SGS = Sirex grey stage-damaged pine trees, LS = Lightning strike-damaged pine trees, Eu = Eucalyptus spp., Aca = Acacia spp., BW = Bugweed, BS = Bare
soil, and Sh = Shadow. OA = Overall accuracy, QD = Quantity disagreement, AD = Allocation disagreement.

Table 3
Producer’s accuracy (%), user’s accuracy (%) and overall accuracy (%) of the studied eight classes using 230 and the 51 most important AISA Eagle wavebands, random forest (RF)
and support vector machine (SVM) classifiers for the 30% test data sets.

Class Using 230 AISA Eagles wavebands Using the 51 most important AISA Eagles wavebands

RF SVM RF SVM

Producer’s
accuracy

User’s
accuracy

Producer’s
accuracy

User’s
accuracy

Producer’s
accuracy

User’s
accuracy

Producer’s
accuracy

User’s
accuracy

HP 72.00 72.00 76.92 80.00 76.00 76.00 073.00 76.00
SGS 73.91 68.00 64.29 72.00 73.08 76.00 069.23 72.00
LS 72.00 72.00 80.00 64.00 74.07 80.00 070.37 76.00
Eu 75.00 72.00 61.54 64.00 82.61 76.00 072.00 72.00
Aca 60.71 68.00 62.96 68.00 70.83 68.00 068.00 68.00
BW 69.23 72.00 76.92 80.00 80.77 84.00 076.92 80.00
BS 91.30 84.00 88.00 88.00 91.30 84.00 088.46 92.00
Sh 84.62 88.00 81.82 72.00 84.62 88.00 100.00 76.00

HP = Healthy pine trees, SGS = Sirex grey stage-damaged pine trees, LS = Lightning strike-damaged pine trees, Eu = Eucalyptus spp., Aca = Acacia spp., BW = Bugweed, BS = Bare
soil, and Sh = Shadow.
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fallow. Since we provide thematic maps for the entire classes on
the study area, the accuracy of mapping sirex-attacked and light-
ing-stuck pine trees should be assessed within pine compartments.

Generally speaking, the shadow and bare soil classes showed
the highest producer’s and user’s accuracies. This was expected
since all other classes represent vegetation (i.e. pine, Eucalyptus
spp., Acacia spp., and bugweed), hence their spectral characteristics
should accurately be discriminated from the non-vegetation clas-
ses (i.e. shadow and bare soil). Within the vegetation classes, the
highest accuracies were attained by bugweed, healthy and light-
ning-struck pine trees. That might be attributed to the distinguish-
able canopy structure (geometry) and biochemical compositions
(mainly chlorophyll) of bugweed. These attributes are directly re-
lated to the canopy spectral signature of a vegetation class on
the image (Kumar et al., 2003; Lillesand and Kiefer, 2001). Regard-
ing pine trees, the order of the three classes in terms of frequently
high individual accuracies was healthy trees, lightning-struck and
sirex grey-damaged snags. This implies that the spectral responses
of pine snags were changed by the damage of lightning strike and
sirex grey stage of attack. Furthermore, the results revealed that
the pair classes of pine trees (i. e., HP, SGS, and LS) can be separated
from each other with very high overall and individual accuracies
(Figs. 6 and 7). That could be due to different lightning strike and
sirex grey stage mode of actions. In other words, the biophysiolog-
ical components and structural parameters of sirex grey-attacked
and lightning-struck pine snags could considerably differ. This is
an interesting topic for further investigation to look at for example
pine pulp structure, wood density, sapwood, cellulose, and lignin
variations that might be due to sirex infestations and lighting
strikes. Studies have shown that tree wood structure and some
other biophysiological constituents can be estimated using hyper-
spectral data (Chave et al., 2009; Popescu et al., 2007; So et al.,
2002).

The relatively high allocation disagreements shown in the ta-
bles of the confusion matrices were expected since pixels covered
by multiple classes could possibly be mismatched in terms of spa-
tial pattern between test ground truth instances and predicated
ones. However, we believe that our classification results are of
good practical application as the amount of differences between
the reference and predicted test samples ranged between 3% and
4% for all classes and between 0% and 8% for pair classes. Addition-
ally, we were interested on the number of pine trees attacked by
sirex and/or struck by lightning.

Since RF and SVM classification algorithms were run using
equivalent training and test data points in the present study, we
weighted their performance against each other in separating our
classes of interest using hyperspectral data. RF and SVM are unique
and versatile algorithms for classifying multidimensional and
noisy hyperspectral data, because the algorithms are robust to out-
liers and do not over-fit (Biau, 2012; Breiman, 2001; Mountrakis
et al., 2011; Prasad et al., 2006; Vapnik, 1995). Over-fitting is one
of the obstacles that mostly hampers the classification of hyper-
spectral data due the high variable-to-sample ratio (Hughes effect)
problem. We analyzed 230 AISA Eagle spectral wavebands for
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Fig. 6. Producer’s and user’s accuracies for healthy (HP), sirex grey-damaged (SGS) and lightning-struck (LS) pine trees pairs comparison achieved by random forest (a) and
support vector machine (b) when the 230 ASIA Eagle wavebands were employed.
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classifying eight classes of 85 samples each. Our sample size was
about 37% of the total number of AISA Eagle wavebands. The good
performance of RF and SVM in the present study proves the
strength of the two algorithms against over-fitting.

The optimal number of trees (ntree = 500) reported in the
present study for RF conforms to the default ntree value recom-
mended by Liaw and Wiener (2002). However, the optimal num-
ber of wavebands that were randomly chosen to split each node
in a tree (mtry = 45) exceeded the default value (about 15).
Researchers have noted that fewer trees in a RF model are re-
quired to reduce the autocorrelation (multi-colinearity) amongst
the RF ranked variables (Goldstein et al., 2010). On the other
hand, smaller mtry values may result in a biased RF model (Gold-
stein et al., 2010). Notably, Breiman (2001) and Statnikov et al.
(2008) argued that RF parameters (ntree and mtry) should be
optimized for obtaining a RF classification model of improved
accuracy.

In this study, the optimal C value (100) of SVM is in consistency
with the values calculated by Petropoulos et al. (2012) who utilized
SVM method for land use/cover classification using hyperspectral
data. A relatively high C value penalizes the training error and
forces the algorithm to reduce the misclassification of samples dur-
ing the training process (Petropoulos et al., 2012). Notwithstand-
ing, Belousov et al. (2002) reported that SVM is flexible to a wide
range of C values. On the other hand, the best c value (0.01)
reported in the present study is slightly different from the
recommendation (inverse of the number of AISA Eagle spectral
bands; 0.004) of Petropoulos et al. (2012) and Sesnie et al.
(2010). Huang et al. (2002) argued that the classification error de-
creased when c decreased from 1 to 0.1. However, the authors no-
ticed that the redial kernel is relatively less affected by c
parameter.

RF is also a known method for features selection (Breiman,
2001; Prasad et al., 2006). Therefore, it is a very valuable procedure
for minimizing hyperspectral datasets that have redundant bands.
RF assigned weights to the AISA Eagle wavebands according to
their importance in discriminating amongst the studied eight clas-
ses. The ranked AISA Eagle wavebands provide an insight in which
spectral bands or a set of spectral bands are more useful than the
others. RF variable selection function reduced the dimensionality
of AISA Eagle data by about 78% as only 51 wavebands were se-
lected as the most important features for classifying the eight clas-
ses on the image.

The results of the present paper explained the similarity of the
performance of SVM and RF classifiers. This is in conformity with
the findings of other authors (e.g., Waske et al., 2009) who reported
relatively similar performance of the two algorithms for classifying
hyperspectral data. However, we suggest the employment of RF
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Fig. 7. Producer’s and user’s accuracies for healthy (HP), sirex grey-damaged (SGS) and lightning-struck (LS) pine trees pairs comparison achieved by random forest (a) and
support vector machine (b) when the 51 most important ASIA Eagle wavebands were employed.
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when hyperspectral data are classified due to the following
advantages:

– RF requires an optimization of two parameters only (ntree
and mtry), whereas SVM requires a selection of a suitable
kernel function first and then setting of the specific
parameters.

– The variable importance by-product of RF which is produced
during the classification process makes the algorithm a robust
feature selection and redundancy reduction method.

– In nonlinear separable cases, RF method generates many deci-
sion tree classifiers that construct simple decision boundaries.
In contrast SVM transfers the data into higher feature space that
enable a generation of a quite complicated decision boundary
that appears nonlinear in the input feature space (Waske
et al., 2009).

– The internal OOB error rate of RF could be used for classification
accuracy assessment when there are limited samples for inde-
pendent accuracy assessments.

– RF calculates proximity among samples and hence can enable
the detection of outliers.

Identification of outliers provides means for unsupervised clas-
sification (Pal, 2005; Touw et al., 2012). Nevertheless, authors (see
Mountrakis et al., 2011 for extensive list of references) have shown
the capability, strengths, and the reliable performance of SVM for
classifying various types of remotely-sensed data.

5. Conclusions

From the results of the present study we can conclude that:

(1) Sirex grey- and lightning-damaged pine trees could accu-
rately be detected using AISA Eagle hyperspectral data, RF
and SVM classifiers.

(2) Other landscape classes in the pine forest plantation could
also be successfully distinguished.

(3) RF and SVM classifiers performed comparatively similar for
separating amongst the eight classes, nevertheless RF
achieved relatively higher overall accuracy. RF is considered
to be a useful approach for reducing the dimensionality of
hyperspectral data.

Overall, our study presents a successful application of hyper-
spectral data, RF and SVM classifiers in detecting pine trees snags.
This could help in making informed decision regarding the man-
agement strategies for pine snags and therefore contributes to
the concept of ‘‘arboriculture’’. However, caution should be taken
when interpreting the results since the study was only a snapshot
of specific environmental conditions.
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