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ABSTRACT

Remote sensing methods for monitoring forest heladthe advanced with the development of sophisticatw
tools and techniques in recent years. Prior rebelaad explored needle-level analysis of Sirex tafiien and this
research explores a new method of investigatingntipact of Sirex woodwasgex noctilio) infestation in Scotch
pines using 8-band multispectral WorldView-2 imagerThe goal of the project was to assess if theadipand
spectral regions associated with this sensor caracterize subtle changes in spectral reflectanosed by Sirex
infestation. Eight different spectral indices welerived from the images and statistical analysis pearformed.
While the needle-level analysis previously repotbdwed statistical differences, none of the eggleictral indices
showed statistically significant differences betwége healthy and infested trees at a 0.05 sigmifie level, though
some showed differences with a weaker significdegel. An automated calibration model based on estie
search techniques was used to consider the optithteahold to determine the capability of the veg@taindex
(ices) to detect changes in spectral reflectarmm the infested trees. The accuracy assessmelisrague poor to
moderate. The best overall accuracy was 68% witappa coefficient of 0.33. While there is an oppoity to
explore multispectral spectral bands of WorldViewt&a in mapping forest health using spectral esliédn our
study, the broadband spectral indices were notldaepsf accurately differentiating the subtle change spectral
properties of healthy and infested tree at theviddal tree level.
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INTRODUCTION

Invasive species are a major challenge to the niagatural resources in many parts of the wortatebts in
the northeastern United States are currently usddous environmental and economic threat due \asion of
several invasive forest pests. Sirex woodwé&spexX noctilio), which is native to Europe, Asia and northernicsfy
is a major invasive forest pest in the Northeastd8 forests. Though only recently being identifiaedNorth
America (New York) in 2004 (Hoebelet al., 2005), Sirex has already drawn increasing intdrem scientists and
forest managers due to its potential to serioualnalge the life cycle of northeastern pines. Sieexdiready caused
extensive damage to pine forests in Australia, Mealand, South America, and Africa (Ciesla, 2008nce, it is
important to mitigate Sirex infestation in the Nwastern US forests to assure pine survival ard yighe area. In
order to mitigate potential threats due to Sirefestation, forest managers need tools and techsitpu@roduce
accurate maps showing the spread of the pest.

While traditional approaches for monitoring foréstlth, such as visual assessment from aerial magdsand
surveys, are important, they are labor and timenisive (Coopt al., 2003). In addition, such approaches are
subjected to human biases and are often restrictedsible wavelengths. Remote sensing-based sisahas
potential application in invasive species detecod mapping because of the change in spectraktefice of the
canopy that typically corresponds to a declineandition. The recent advances—in terms of speeinal spatial
resolution—of remote sensing technology has ine@abke potential to provide more efficient procegsthan
traditional approaches in terms of time, labor, eost.
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Satellite imagery with medium spatial and speateablution has been widely used in monitoring folesalth
(e.g., Joriaet al., 1991, Lutheret al., 1997; Royle and Lathrop, 1997). Previous studiesw that broad- and
narrow-band vegetation indices, derived from a doation of specific spectral bands, can be usedhfggstigating
vegetation health (Gao, 1996; Shadrial., 2006; Zhacet al., 2005). Royle and Lathrop (2002) used a normalized
difference vegetation index (NDVI) derived from timiémporal Landsat TM/ETM+ images to monitor thealh
of forest stands infested with hemlock woolly adtkl§Vanget al. (2007) used a normalized difference water index
(NDWI) derived from Landsat TM images to monitokaiecline in the Ozark Highlands.

Franklin (2001) highlighted the increasing reliarm® new data and methods in remote sensing. Festfor
health studies, there is an opportunity to use tersensing-based analysis to detect infested kngegriving new
indices that combine specific spectral bands. Hygestral images provide many narrow bands and dfffer
possibility to produce spectral indices that detsgbtle changes in spectral reflectance from fomstopy.
However, the application of hyperspectral dataeagignal study is limited due to higher applicatiomst, low
coverage area, and limited availability. While v$enoderate resolution satellite imagery is coitaive for stand-
level analysis, evaluating invasive pest spreathénheterogeneous northeaster forests is ofterecigaig, since
most invasive species are host specific. High apedsolution satellite images, though less cdsicéfe, offers the
potential for providing accurate information at thee level. Efficiently utilizing this data reqas consideration of
new techniques. The objective of the study isdtednine the capability of high resolution multisjal image-
derived spectral indices to characterize Sirex-tedustress on pines at a canopy level. The stusly @ims to
explore an automated method of detecting infestsbtusing spectral indices.

METHODSAND MATERIALS

Study Area and Data

The study area is located in Heiberg Memorial Fovdsich covers approximately 1600 ha in centralviNe
York State (42.75N, 76.08 W) (Figure 1). The property is managed by theeStitiversity of New York College
of Environmental Sciences and Forestry (SUNY-ESHe main tree species in the forest are red majuder (
rubrum), sugar maple Acer saccharum), red oak Quercus rubra), beech varietiesFHagus), red pine Pinus
resinosa), Scotch pine Finus sylvestris), Norway spruceRicea abies), eastern hemlockTéuga Canadensis), and
northern white cedafThuja occidentalis) (Pugh, 2005). Sirex has already been detectedrite Scotch pines within
Heiberg forest. Studies are being conducted bgmealogists from SUNY-ESF to understand the invagioology
of Sirex in the area.

A WorldView-2 image (DigitalGlobe Inc. 2010) colked on August 7, 2010, was used for the study. The
WorldView-2 data contains 8 multispectral bandsr(3patial resolution) and 1 panchromatic band (0.5patial
resolution), though only the multispectral bandsemgsed in this study (Table 1). The image wassteggd within a
1 pixel RMSE using National Agriculture Imagery Bram (NAIP) digital orthoimagery as a reference Q&R
2010). The location of healthy and Sirex-infestatgh pines was collected by two different fielews in the
summer and fall of 2009 and 2010 when the infestegs were at early to mid stages of infestatibacations of
the trees were identified in the field using diffetially corrected Global Positioning System reeesv Data from
36 infested and 46 healthy trees were used in ttlagysis. Figure 1 shows the location of the stadya and the
reference points used in the study.
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Table 1. WorldView-2 multispectral image bands used

Number Label Spectral Range
1 Coastal Blue 400-450 nm
2 Blue 450-510 nm
3 Green 510-580 nm
4 Yellow 585-625 nm
5 Red 630-690 nm
6 Red edge 705-745 nm
7 Near Infrared 1 770-895 nm
8 Near Infrared 2 860-1040 nm

Eight different spectral indices were generateth@nstudy. These indices are summarized in TablEh& band
region for each index reported in the original gtuehs best matched to the bandwidth region assatiaith the
WorldView-2 data shown in Table 1. The raw digitaimbers (DNs) from the pixel closest to the coatn of
each sampled trees were used to produce the dpadices.
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Table 2. Spectral indices derived from WorldView-2 imagery to investigate Sirex-infested pines

Name Abb. Formula used Reference
Enhanced Vegetation Index EVI 2.5 x (By— B)/(Bg + 6% By — 7.5% B + 1) Heuteet al.
* (2002)
ifi il adij 2xBg+ 1—,/(2xBg+1)2—- 8(Bg—B;)
Mod|f|egl so_|l adjusted MSAVI g y g g 5 Qi etal. (1994)
vegetation index 2
Normalized Difference Soll NDS| (B — BI(Bs + By) Wolf, 2010)
Index
. . Tucker (1979)
\N/erggt'i)endlsggirence NDVI (Bg— By)/ (Bg + Bx) and Wolf
g (2010)
Normalized Difference
Water Index NDWI (Bg— By)/(Bg + By) (Wolf, 2010)
Non-Homogeneous Feature
- +
Difference NHFD (Bs — By)/(Bg + By) (Wolf, 2010)
Pigment specific Simple Blackburn and
Ratio PSSR (B-B)/(B-+ By Steele (1999)
Structure Insensitive Penuelast al.

SIPI (B; = B)/(B7 + Bs)

Pigment Index (1995)

*coefficients from MODIS-EVI were used

M ethodol ogy

The methodology flow chart (Figure 2) shows thepstased in this study. The difference in mean sakect
indices between healthy and infested pines wa®dessing two sample t-tests. An automated caldorat
optimization method (Inet al. 2007) was implemented using VBA code in the ESRE@S 9.3 software to
optimize the selection of vegetation indices toasafe healthy and infested pines in the study area.
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Figure 2. Methodology flowchart.

The automated calibration of the vegetation indergholds used in this study modifies the automhbtedry
change detection model from lehal. (2007) to separate infested and healthy treesgyusatellite derived spectral
indices. The steps used in the automated model: WEyeiser provides threshold parameters (stad, step size,
and threshold type); (2) model automatically exsaedex values for each reference point; (3) medebmatically
computes accuracies for the presence or absen&@iref for each threshold value or each combinatibn
thresholds when multiple layers are used (i.e., ¥@getation indices); (4) export a table showingshold values
and associated overall accuracy, Kappa coefficiesdr's and producer’s accuracies.

RESULTSAND DISCUSSIONS

Digital Numbersfrom Healthy and I nfested Pines

The DN curves for both healthy and infested tremvaois showed a similar trend (Figure 3). The DN &alfor
all bands were higher in healthy pines with theatgst difference at bands 6, 7, and 8. This ind&ttat these three
bands might be useful in characterizing healthy iafested trees. However, the limited variatiorthe DN values
may indicate that the Sirex-infestation in the #brie at early stages or that infested crowns artagtly obscured by
healthy trees, generating a mixed response. &1 Etages of infestation, Sirex causes needle ldistmn that
would be more apparent in the visible and red-dugels.
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Figure 3. Average DNs for healthy and Sirex-infested pine®/iorldView-2 imagery (Aug 7, 2010).

Spectral Indices

Figure 4 shows box plots for the eight spectraidaesl comparing healthy and infested pines. The fdok
indicates that variation in spectral indices ishieigin Sirex-infested pines. This variation mayrespond to
different levels of infestation or tree health. T sample t-test comparing healthy and Sirexsigfé pines for
each spectral index showed that the mean differbab@een vegetation indices was not significargred of 0.05
(p-value > 0.05 for all t-tests), though some iedichowed differences with a slightly weaker sigarice level.
The p-values from the t-test were: EVI — 0.06, MSAV0.1, NDSI — 0.14, NDVI — 0.09, NDWI — 0.12, NBF
0.23, PSSR - 0.16, and SIPI —0.12.
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Figure 4. Box plots for different spectral indices from hégl{H) and Sirex-infested (1) trees.

Automated Calibration M odel Results

The automatic calibration method using one thraslshlowed poor to moderate accuracy results (Figure
regardless of which index was considered. The destall accuracy was 68% when NDVI (= 0.69) wasduse a
threshold. The Kappa values were below 0.33 fotha#isholds. The thresholds identified in the awtad method
were either upper threshold (i.e., pixels belowttireshold are classified as Sirex-infested pioe$dwer threshold
(i.e., pixel above the threshold are classifiedSaex-infested pines). The results from analysishaf spectral
indices indicated that the mean of six spectrakisl(i.e., MSAVI, NDVI, NDWI, NHFD, PSSR, SIPI) nelower
in infested pines, while the other two (EVI and NP®ere higher in the infested pines. However, diginction
was not significantly different. The results of @uiated method using one threshold is shown in Eigurwhich
indicates that none of the spectral indices usexk able to characterize infested and healthy panesns with
good accuracy. The overall accuracy pattern foindices was similar. The NDVI threshold producedtér results
than other thresholds as it was derived from N&dRd the red band, which are considered to be mgsbrtant
bands for detecting healthy and invasive plantsvéier, the poor accuracy results suggest that tRelfdnds in
the WorldView-2 imagery were not capable of diffeifating healthy and Sirex-infested pines in oudgt
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Figure5. Calibration results using single threshold withrissaccuracy, producer’s accuracy, overall accuraogd
Kappa statistic, the vertical dashed line showshttst accuracy results at an optimized threshold.

Because NDVI performed the best of the indicatvaeated and has been widely used in monitoringsior
health, it was used as a base threshold in autdneatiération model with two thresholds. The accyraesults
from the automated model using two thresholds (NBMine of seven other indices) were similar to rigults
from the method using single threshold. The maxinawerall accuracy obtained was 68% with NDVI (0.&9)one
threshold as shown in Table 3. The accuracy resadte similar to the results from the automatedhm@tusing one
threshold, as the indices were derived from sintikands and thus are highly correlated.

Table 3. Optimized threshold and best accuracy results from automated calibration with two thresholds

- Overall
Optimize thresholds Accuracy Kappa
EVI (0.39) and NDVI (0.69) 68 % 0.33
MSAVI (0.74) and NDVI (0.69) 68 % 0.33
NDSI (0) and NDVI (0.68) 65 % 0.27
NDWI (0.06) and NDVI (0.69) 68 % 0.33
NHFD (-0.16) and NDVI (0.69) 68 % 0.33
PSSR (0.41) and NDVI (0.69) 68 % 0.33
SIPI (0.24) and NDVI (0.69) 65 % 0.26

Zhang et al. (2010) investigated the spectral response of Sirested needles using spectroradiometer
measurements observed in the lab and suggestedithpertant spectral regions (i.e., 350—-629 nm~1386 nm,
and 1883-2033 nm) for comparing the spectral ptgpafr healthy and infested scotch pines. Theyipalerly
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identified combinations of 377 nm (blue) and 1944923 nm (NIR) bands; however, these bands aravalable
in Worldview-2 imagery. The closest bandwidth conathion used in the NDW!I index combined coastal i§hand
1) and NIR 2 (band 8) did not find statisticallgmsificant results. The results from this studygesg that the subtle
changes in spectral reflectance of Sirex-infestadpmay not be detected from broadband sensors.

The poor accuracy results should not be attribtaethe automated calibration model used in thighst&ince
the mean values of vegetation indices of healtld/infested pines were not significantly differeihtwvas expected
that the model would result into poor results. Hegre there is an opportunity in future to explone auutomated
process in infested tree detection. The spectdités supplied in this study may have been hightijuénced by
other plants which covered Sirex-infested treesaambpy level. The infested trees sampled were widehttered
and Sirex normally attacks pines with suppressathbealthy condition. Since these suppressed tnagsnot reach
the canopy level, it is often challenging to extramwn level information for the infested tree ngsisatellite or
airborne images. The result of the analysis mayHaeen different if the infested trees were clastenr if the
crowns of infested trees were exposed.

SUMMARY AND CONCLUSIONS

Eight spectral indices derived from eight WorldVi@wnultispectral bands were analyzed to study peetsal
properties of infested and healthy pines. None he&f $pectral indices from infested and healthy tnexre
significantly different at significance level ofd®, though several of the indicators were statifffiddifferent with a
slightly weaker testing level. An automated caliltma method was applied to determine if a vegetaiitdex
threshold derived from high resolution satelliteagery could be used to characterize healthy arek-Sifested
trees. However, the accuracy attained from theraated method was poor. Based on the results,cibrisluded
that spectral bands from WorldView-2 data were capable of characterizing the subtle changes irtsge
reflectance for the Sirex-infested and healthy pasenpled in this study. However, the results weighli
influenced by the presence of healthy trees owecémopy of Sirex-infested trees. Hence, mappinexSnfestation
is often challenging. Though high resolution imageray capture spatial details of each tree on gipitnmay not
provide better results if the imagery has low s@aeesolution. Future study will consider WorldWi€ imagery
for characterizing infestation for forests withdar, continuous areas of infestations and comgeredsults from
similar methods using hyperspectral images. Futuoek will also explore the use of multi-temporalatiye
analysis in characterizing forest health conditions
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