Short Communication / Kort Mededeling

Amylostereum areolatum (Aphyllophorales: Stereaceae) in South Africa

A.P. Baxter*, I.H. Rong and A.L. Schutte
Biosystematics Division, Plant Protection Research Institute, Private Bag X134, Pretoria, 0001 Republic of South Africa

Received 28 April 1995; revised 18 July 1995

Amylostereum areolatum (Fr.: Fr.) Boidin has been found in South Africa for the first time. So far, its presence has been confirmed on Pinus radiata D. Don in the Tokai Plantation, Western Cape. Its distribution area is expected to follow that of the wood-boring wasp, Sirex noctilio Fabricius, with which it has a symbiotic association.

Amylostereum areolatum (Fr.: Fr.) Boidin is vir die eerste keer in Suid-Afrika aangetroet. Tot dusver is die teenwoordigheid daarvan op Pinus radiata D. Don in die Tokai Plantasie, Wes-Kaap, bevестig. Na verwaging sal die verspreidingsgebied van die fungus met dié van die hout-boringe wasp Sirex noctilio Fabricius, waarmee dit ‘n symbiotiese asociatie vorm, ooreenstem.

Keywords: Amylostereum areolatum, fungus-insect symbiosis, Pinus radiata, Sirex noctilio, South Africa.

*To whom correspondence should be addressed.

Amylostereum areolatum (Fr.: Fr.) Boidin was recently found in South Africa for the first time, in the Western Cape. A weak pathogen of Pinus L. species (Talbot 1964; Coutts 1969a, 1969b), this fungus is best known for its symbiotic association with the potentially destructive wasp, Sirex noctilio Fabricius. Talbot (1977) as well as Neumann and co-workers (1987) have reviewed the literature on the complex biology of the Sirex-Amylostereum-Pinus association and the interaction of biocontrol organisms.

Carying the fungal symbiont in two internal mycangia, the female wasp injects eggs together with phytotoxic mucus and fungal arthrospores into the sapwood (Neumann et al. 1987). The mucus, containing enzymes including phenoloxidase (Wong & Crowden 1976), rapidly induces physiological changes with concomitant foliage symptoms (Coutts 1969b) and increases the susceptibility of trees to the fungus (Coutts 1969a, 1969b). Phenoloxidases are also produced by A. areolatum (Stalpers 1978), which causes a white wood rot (King 1966; Chamuris 1988) and grows relatively slowly in standing trees (Vaartaja & King 1964; Coutts 1969a). Neither the fungus nor mucus alone is usually capable of killing trees, but the combination is lethal (Coutts 1969a). In culture, A. areolatum optimally grows at 25°C (Madden 1981) and poorly competes with later fungal colonizers of wood infested by S. noctilio (King 1966). Immature stages of the wasp are mycophagous (Cartwright 1929) and depend on actively growing A. areolatum for their development and survival (Madden 1981). In S. cyanus Fabricius, larvae evidently ingest wood as well as the mycelium of their symbiont, A. chailletii (Pers.: Fr.) Boidin, acquiring essential digestive enzymes from the fungus (Kukur & Martin 1983).

In the temperate Northern Hemisphere, where A. areolatum occurs mainly on Picea (Jülich & Stalpers 1980; Chamuris 1988), Amylostereum species are saprotrophs (Jülich & Stalpers 1980). Contrastingly, in the Southern Hemisphere A. areolatum occurs on Pinus, which it damages or kills in association with Sirex wasps (Talbot 1977). Similarly, the Eurasian Sirex noctilio, reportedly also established in Canada (Morgan 1968), is not considered a primary pest in Europe (Neumann et al. 1987), whereas it is a major pest of Pinus in the Southern Hemisphere, particularly in New Zealand and Australia (Talbot 1977). In South Africa it is expected to become a major pest in the Cape forestry areas due to the Mediterranean climate and abundance of suitable host trees (Tribbe 1995).

Although the wasp was reported in South Africa as long ago as 1962 (Morgan 1968), such earlier records were limited to harbour interceptions (C.D. Eardley, pers. commun.). The first South African isolate of the fungus was positively identified in September 1994 from tunnelled P. radiata D. Don wood. Its wasp symbiont appears to have been present in the Cape Peninsula for at least two years prior to its discovery in April 1994 (Tribbe 1995). Sirex host trees recorded in South Africa thus far are P. radiata, P. pinaster Aiton and P. taeda L., and the present distribution area appears to fall within a 90-km arc around Cape Town (Tribbe 1995).

Wood samples were initially taken from a larva-infested P. radiata log in Tokai Plantation by forest entomologists of the Plant Protection Research Institute. Later, standing trees with suspected Sirex infestation, which was subsequently confirmed, were core sampled. Pieces of wood were placed on 1.5% malt extract agar (MEA) and incubated at 24°C. Cultures of Amylostereum were obtained from both sets of samples as well as from female reproductive organs, floated overnight in sterile water and then incubated on MEA. Spot tests for laccase were done with 1-naphthol as well as syringaldazine, as described by Marr (1979) after Käärik (1965) and Harkin et al. (1974) respectively.

Cultures laccase positive. Growth rate 55–65 mm after two weeks at 25°C, about 40 mm at 20°C. Colony mat with margins appressed; thin, cottony to somewhat woolly, white to pale cream, becoming subelutriate to pelliculose with patches of brown, later almost entirely light yellowish-brown with patches of darker brown; reverse darker. Aerial hyphae mostly 2.0–4.5 μm diameter, thin-walled, sometimes yellow and with oily-appearing contents. Clamp connections (Figures 1 & 2) present at all septa, sometimes sprouting; prominent, ratio hyphal diameter clamp diameter ≥ 1. Skeletal hyphae present as pointed stectiocystidia (Figures 3–5), originating from generative hyphae and subtended by a clamp connection, mostly yellow to yellow-brown, often ventricose, usually densely encrusted with crystals over at least the apical third of their length; length very variable, 30–150 × 4.5–7.5 μm; walls up to 2.5 μm thick. Basidia formed within four to six weeks, extremely sparse; subhymenial, about 14–15 × 4.5 μm, with a basal clamp and four robust sterigmata. Basidiospores hyaline, smooth, amyloid, predominantly ellipsoid. Arthrospores (Figures 6–8) abundant, cylindrical, mostly oblong to bacilliform with rounded ends, sometimes barrel-shaped; 7.0–18.0 × 2.5–4.5 (mostly 11.5 × 3.5) μm. Basidiomata not seen: Talbot (1977) noted that investigators such as King (1966) had not found fruit-bodies of A. areolatum in Australia or New Zealand, although isolates from those areas were able to form them in culture, Gilbertson (1984) postulated that dissemination in Amylostereum species in some areas had become dependent on the insect symbiont. This would sidestep the uncertainty of propagation by wind-dispersed basidiospores, which are exposed to desiccation and the likelihood of landing on unsuitable sites (Gilbertson 1984).

Specimens examined from Pinus radiata D. Don in Tokai Plantation (34°00′S 18°25′E), south-western Cape Province, South Africa: PREM 51842 (culture PPR 56103), coll. G. ST, Tribe, August 1994; PREM 51843 (culture PPR 5642), coll. J.J. Cillit, November 1994; PREM 51877 (culture PPR 5858) from
reproductive organs of female *S. noctilio* from the above locality, January 1995. Voucher specimens of the wasp are deposited in the National Collection of Insects, Plant Protection Research Institute, Pretoria.

Cultures on MEA closely corresponded with the characters reported by Stalpers (1978); morphological features matched those described by Talbot (1964). Clamped hyphae (Figure 9) were observed on female reproductive organs that had been suspended in water overnight. All the isolates reported above produced the brownish, acute, encrusted cystidia characteristic of the genus (Chamuris 1988), as well as arthrospores, which are formed in cultures of *A. areolatum* but not in those of *A. chailletii* (Stiepman & Zycha 1968; Stalpers 1978; Chamuris 1988). Although multinucleate, the arthrospores are homokaryotic (Gaut 1969). By means of interferterility tests and starch-gel electrophoresis, Gaut (1969) confirmed the identity of the fungus associated with *S. noctilio* in Australia as *A. areolatum*.

Talbot (1964), acknowledging the help of J. Boidin, was the first to record *A. areolatum* as a species of *Amylostereum*. Boidin (1958) had segregated this genus from *Stereum Hill ex Gray sensu stricto* including *A. chailletii*, the type, as well as *A. areolatum* and *A. larvigatum* (Fr. & Fr.) Boidin. Of the four species matching the genus concept of *Amylostereum* accepted by Chamuris (1988), two are symbionts of siricid wasps (Talbot 1977): *A. areolatum* and *A. chailletii*. In addition to *S. noctilio*, *A. areolatum* is associated with *S. juvencus* (Linnaeus) and *S. nitobei* (author citation not traced); *A. chailletii* is associated with *S. cyaneus*, *S. areolatus* (Cresson) and *S. californicus* (Ashmead) as well as certain *Urocerus* species (Gilbertson 1984).

The nature of the cystidia in *Amylostereum* has been subject to various interpretations. Boidin (1958) was of the opinion that the distinction between cystidia, pseudo-cystidia and skeletal hyphae was largely based on the position and orientation of the structure in question. Price (1973) interpreted the cystidia in *Amylostereum* as the ends of skeletal hyphae, terming them skeletal-cystidia. Dook (1964) had used this term to designate the modified tips of skeletal hyphae that usually terminate in the
hymenium. According to Julich & Stalpers (1980), cystidia in *Amylostereum* originate from skeletal hyphae, rarely from generative. In the cultures examined in the present study, the cystidiform elements clearly originated from thin-walled, clamped, generative hyphae. Their length was very variable: the longer ones, in particular, could be interpreted as the modified, sometimes branched ends of skeletal hyphae.

The source of the present *Sirex-Amylostereum* infestation is, as yet, unknown. An attempt was made in 1970 by I.P.C. Gautheret and the female reproductive organs were removed by G.D. Tribe, all of the Plant Protection Research Institute.

Acknowledgements

Wood and wax specimens were provided by G.D. Tribe as well as J. Cillié, whose idea was to take core samples; the wax was identified by C.D. Eades and the female reproductive organs were removed by G.D. Tribe, all of the Plant Protection Research Institute.

References


