
Modelling the spatial distribution of two important
South African plantation forestry pathogens

Vida van Stadena, Barend F.N. Erasmusb, Jolanda Rouxc,
Michael J. Wingfieldc, Albert S. van Jaarsveldb,*

aDepartment of Genetics, University of Pretoria, Pretoria 0002, South Africa
bConservation Planning Unit, Department of Zoology and Entomology,

University of Pretoria, Pretoria 0002, South Africa
cTree Pathology Co-operative Programme, Forestry and Agricultural Biotechnology Institute,

University of Pretoria, Pretoria 0002, South Africa

Received 6 March 2002; received in revised form 27 January 2003; accepted 12 June 2003

Abstract

Pathogens, pests and diseases impact heavily on commercial plantation forestry in South Africa, and must thus be considered

in any diversified and adaptive management approach. Two important fungal pathogens of Pinus and Eucalyptus species,

respectively, are Sphaeropsis sapinea and Cryphonectria cubensis. The aim of this study was to explore the use of bioclimatic

modelling to predict the habitat distribution for these pathogens, and to consider potential distribution patterns under conditions

of climate change. High-risk areas identified for Sphaeropsis dieback coincide with the summer rainfall hail belt, emphasising

the need for planting resistant Pinus spp. in these regions. A much smaller area of South Africa is predicted to be suitable for the

occurrence of C. cubensis than for S. sapinea, but a range shift westward in suitable habitat for C. cubensis is predicted under a

climate change scenario. Of concern is that many of these areas are currently being planted with disease susceptible Eucalyptus

clones. These preliminary results, and further refinement of the model, will lay a valuable foundation for future risk assessment

and strategic management planning in the South African forestry industry.

# 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The South African commercial forestry industry is of

considerable economic importance to the country, with

thevalue of timber products estimated at US $15 million

for 1996 (Hassan, 1999). The industry depends almost

exclusively on the planting of exotic Pinus, Eucalyptus

and Acacia species, that collectively cover an area of

approximately 1.5 million hectares (Anonymous,

2001). The extensive use of monocultures has raised

concerns regarding the impact of diseases on the future

competitiveness and sustainability of the industry

(Wingfield et al., 1989). Many fungal pathogens cause

diseases in commercial plantation species in South

Africa. These account for losses of millions of dollars

due to timber damage or tree mortality, excluding

impacts due to loss of growth (Zwolinski et al., 1990).
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Sphaeropsis sapinea (Fr.:Fr.) Dyko and Sutton

[Syn. Diplodia pinea (Desm.) Kickx] is one of the

most important and widespread pathogens in pine

plantations in South Africa. This pathogen has caused

severe damage to pine plantations in many countries,

but its notoriety is based on the devastation it has

caused in South African plantations of Pinus radiata

D. Don and P. patula Schlechtend and Cham., espe-

cially after hail injury (Laughton, 1937; Swart et al.,

1987b). The fungus is widespread in South Africa, and

numerous outbreaks have been reported, mostly from

summer rainfall areas following hail damage. The

most common disease symptoms associated with S.

sapinea infections are shoot blight and top dieback,

but canker accompanied by resinosis, bluestain and

root disease are also found (Swart et al., 1987b; Swart

and Wingfield, 1991a). S. sapinea also exists as an

asymptomatic endophyte in healthy tissue of suscep-

tible pine species (Smith et al., 1996; Stanosz et al.,

1997), and can cause disease following predisposition.

Disease usually affects trees that are wounded by hail,

insects or other agents, or physiologically stressed by

drought or nutrient deficiencies. Relative humidity,

optimum temperatures, the occurrence of rain, tem-

peratures prevailing after rainfall, microclimatic con-

ditions and the season can all influence the dispersal

of conidia, spore germination and host penetration

by S. sapinea (Swart et al., 1985, 1987a; Swart and

Wingfield, 1991a,b).

In Eucalyptus, canker caused by Cryphonectria

cubensis (Bruner) Hodges is one of the most important

limitations to plantation success (Bruner, 1916;

Boerboom and Maas, 1970; Hodges, 1980). The dis-

ease was first found in South Africa in 1988 (Wing-

field et al., 1989) and it has subsequently caused

significant losses in the sub-tropical Zululand area.

Infection generally results in the formation of cankers

at the bases and around branch stubs of trees. Basal

cankers are characterised by swelling and cracking of

the bark, while stem cankers generally result from

infection of branch stubs and death of the cambium.

Infection of young trees results in death, while

older trees with stem cankers are prone to wind break-

age (Sharma et al., 1985; Florence et al., 1986).

Cryphonectria canker is prevalent in many tropical

parts of the world, particularly between 308 north

and south of the equator. The growth and spread of

the pathogen is promoted by high rainfall, humid

conditions, and temperatures above 23 8C (Hodges

et al., 1979; Sharma et al., 1985).

Plantation disease management relies heavily on the

selection of disease tolerant planting material, since

chemical control on established trees is generally

uneconomical and unreliable. Great success has been

achieved in disease management through the selection

of disease tolerant clones and hybrids (Denison and

Kietzka, 1993; Wingfield et al., 2001). Breeding and

selection is often, however, dependent on accurate site

species matching. Trees selected for disease tolerance

on one site, can be susceptible to the same disease on

an unfavourable site. Extensive breeding programmes

are thus used to select Eucalyptus clones resistant to

Cryphonectria infection for the Zululand area of

South Africa (Van Zyl and Wingfield, 1998, 1999;

Van Heerden and Wingfield, 2001).

Pine and Eucalyptus plantations in South Africa are

distributed mainly along the eastern and south-eastern

parts of the country, and include various climatic

regions. The distribution and infectivity of both patho-

gens considered in this study are affected by climatic

parameters. Thus, climate studies can promote our

understanding of why species are limited to specific

regions. If the spatial distribution of a plant is not fully

defined, bioclimatic analysis allows the prediction of

the probable or theoretical limits of the distribution

(Lindenmayer et al., 1991). This could have important

implications for developing appropriate management

strategies to reduce disease impact or incidence.

Powerful statistical techniques coupled with geo-

graphical information systems (GIS), have fostered the

development of a host of predictive habitat distribution

models. This array of models covers aspects as diverse

as biogeography, conservation biology, habitat or spe-

cies management and climate change research (Guisan

and Zimmermann, 2000). A bivariate climate envelope

model developed by Jeffree and Jeffree (1994, 1996)

for predicting species distribution patterns and the

effects of climate change has recently been modified

to accept multivariate inputs to yield probability of

occurrence maps for species (Erasmus et al., 2000).

The aim of this study was to assess the value of the

modified Jeffree and Jeffree model (Erasmus et al.,

2000) for predicting the broad habitat distributions

of two important South African forestry pathogens,

S. sapinea and C. cubensis, and to explore their poten-

tial distributions under conditions of climate change.
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In future, successful plantation disease management

will depend on cooperative research involving many

disciplines such as pathology, entomology, genetics,

soil science and silviculture. A disease modelling sys-

tem that can aid in the selection or matching of specific

trees to specific sites could have a major positive impact

on the management of plantation diseases. Our results

should form a valuable basis for the development of

future spatial disease management systems.

2. Materials and methods

2.1. Pathogen distribution records

The distribution records for S. sapinea and C.

cubensis were obtained from the disease database of

the Tree Pathology Co-operative Programme (TPCP)

at the Forestry and Agricultural Biotechnology Insti-

tute (FABI), University of Pretoria. The TPCP repre-

sents a collaborative venture between the University of

Pretoria and all the major players in the South African

forestry industry, and manages a centralised database

of all important local forest pathogens. In the case of S.

sapinea, the data set contained 87 confirmed reports of

the fungus identified between 1994 and 1999 on 11

different Pinus species, 66% of which were from

either P. patula or P. radiata. For the purposes of this

modelling exercise, input data were resolved to

10 km � 10 km grid cells, reducing the 87 reports to

48 records. This was due to multiple reports of the

pathogen from the same region in different years or

from different host species.

For C. cubensis the data set comprised 17 confirmed

reports of the pathogen, 14 cases identified on Euca-

lyptus trees, and 3 from Tibouchina spp. As in the case

of S. sapinea, the close proximity of some reports

resulted in a reduction of the number of input records

for modelling purposes from 17 to 14. As a sampling

density of less than nine records is regarded as an

unreliable input for the model (Erasmus et al., 2000),

these 14 records were considered sufficient for pre-

dicting the habitat distribution of C. cubensis.

2.2. Climate data

Historic climate data (30 years means 1960–1990)

and a digital elevation model for South Africa was

obtained from the Computing Centre for Water

Research (CCWR, University of Natal, South Africa).

These data comprised interpolated climate surfaces at

a minute by minute resolution. Five variables, i.e.

altitude, average rainfall of the driest month, average

rainfall of the wettest month, average temperature of

the hottest month and average temperature of the

coldest month were selected for use as model pre-

dictors. They were identified from a suite of 11

variables using Pearson’s correlation coefficient to

select the least correlated variables.

For predicting distributions under conditions of

climate change, two sets of climate data were used.

Only three variables were employed at a resolution of

quarter-degree grid cells (25 km � 25 km): (1) mini-

mum temperature of the coldest month, (2) maximum

temperature of the hottest month and (3) mean annual

precipitation. One set of data was based on historical

climate data and one set on a general circulation

model (GCM) predicting climate change. The Hadley

Centre Unified GCM (HadCM2 with no sulphates)

was used, and it predicts significant changes in the

regional climate by the year 2050 or sooner, with an

average temperature increase of 2.5–3 8C expected

(Erasmus et al., 2000). Mean annual hail day fre-

quency (HDF) data, derived from HDF, altitude and

latitude were available for the summer rainfall region

of South Africa and obtained from Le Roux and

Olivier (1996).

2.3. Climate matching

For comparative purposes in the case of C. cubensis,

the global geographic distribution of the pathogen was

summarised from existing literature. For each of

these localities, the annual rainfall, mean temperature,

maximum temperature and minimum temperature

were obtained from New et al. (1999, 2000) (http://

www.cru.uea.ac.uk/�markn/cru05/cru05_intro.html,

http://ipcc-ddc.cru.uea.ac.uk/). Altitude values were

determined from a global digital elevation model

GTOPO30 with a horizontal spacing of 30 arc seconds

developed through a collaborative effort led by the US

Geological Survey’s EROS Data Centre (http://edc-

daac.usgs.gov/gtopo30). Areas predicted to be a sui-

table habitat for the fungus under local conditions

were identified based on homoclime matching. Homo-

climes are locations that experience similar climatic
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conditions (Lindenmayer et al., 1991). Areas within

South Africa were identified where the climatic con-

ditions were within the limits of the minimum and

maximum values identified globally for each of the

five parameters under consideration. From this, a

single common area meeting all criteria was defined

as a potential habitat for the pathogen, distinct from a

modelled solution.

2.4. Modelling procedure

The adapted Jeffree and Jeffree bioclimatic model

can incorporate not only two but n climate variables

(Erasmus et al., 2000). The input data comprises

11 800 grid cells covering South Africa populated

with climate variables. The grid cells in which the

particular pathogen species was recorded, were

termed known records. The model creates a multi-

dimensional scatterplot using the selected climate

variables for each known record grid cell, generates

a n � n covariance matrix, transforms the variables

according to specified criteria, and maps the gener-

ated values back onto geographical space. The output

is a probability of occurrence value in every grid cell

for a given species. However, such a single prob-

ability of occurrence value for each cell gives no

indication of the underlying variation in the calcu-

lated probability values. This means that although

two grid cells may have the same probability of

occurrence for a given species, they may differ in

their ability to reflect the true distribution pattern of

the species in question. Consequently, a statistical

re-sampling technique known as jackknifing was

incorporated into the model to quantify the variation

underlying the calculated probability values. By mak-

ing use of jackknifing, n probability of occurrence

values (n ¼ size of data set) can be generated for each

grid cell instead of a single value. This method re-

calculates the probability of occurrence n times, each

time using a different combination of n � 1 of the data

set’s known records. The jackknife principle uses

these n replicates to estimate the variation associated

with the probability of occurrence estimates. It

calculates an estimated standard error (a measure

of absolute variation), and a coefficient of variation

(a measure of relative variation), associated with each

probability of occurrence value (I. Smit, personal

communication).

2.5. Model evaluation

The opportunistic nature with which the distribution

data for the two fungi were collected precluded rig-

orous model evaluation with this particular data set.

However, this same climate envelope model was

subjected to rigorous evaluation using presence–

absence data resulting from a coordinated survey

effort. Erasmus et al. (2002) used the distribution

records of 34 bird species and tested model perfor-

mance using receiver operator characteristic analyses

(Fielding and Bell, 1997). The model performed sig-

nificantly better than a random model with no dis-

criminatory ability. The model also accurately

predicted the complete known distributions for 24

of the 34 bird species, using a 20% sub-sample of

the known records. The remaining 10 bird species

distributions are thought to be more determined by

habitat and resource preferences than climate. In sum,

the model performed satisfactorily and is therefore

considered adequate for the present study.

3. Results

3.1. Predicted distribution of S. sapinea

A predicted distribution providing probability of

occurrence values for S. sapinea in South Africa was

derived from five variables (Fig. 1A). The predicted

distribution range decreased as the level of probability

was increased. At a probability of occurrence of

greater than 0.5, a total of 994 grid cells (10 km�
10 km) were selected, which contained 50% of the

known distribution records of the fungus. The selected

area closely corresponds to the regions utilised for

commercial plantations in South Africa. The inter-

pretation of the calculated probability of occurrence

values can be improved when the underlying variation

associated with each probability value is considered,

and more confidence can be attributed to a grid cell

with a high probability value and a low standard error.

Under more stringent criteria of a probability of

occurrence value greater than 0.75 and a standard

error of less than 0.15 (arbitrary values), 491 grid

cells were selected (Fig. 1B). This area, derived from

environmental parameters, and which includes eastern

Mpumalanga, central and western KwaZulu-Natal,
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and the eastern parts of the Eastern Cape Province,

represents a core region predicted to reflect the region

of the country most at risk of S. sapinea infection.

In the South African context the principal risk factor

for outbreaks of Sphaeropsis disease remains hail

damage to susceptible trees. A spatial pattern of mean

annual hail day frequency (HDF) (Le Roux and Oli-

vier, 1996) was combined with the S. sapinea dis-

tribution predictions. The areas identified in

Mpumalanga and KwaZulu-Natal as high-risk regions

for S. sapinea infection, also expect more than three

occurrences of hail per annum (Fig. 1B). This empha-

sises the management reality that plantation produc-

tion will necessarily be compromised by a widespread

pathogen such as S. sapinea. Furthermore, estimated

production targets for such hail-affected regions will

have to be weighted accordingly.

3.2. Predicted distribution of C. cubensis

C. cubensis has been reported from numerous

tropical countries of the world, where its distribu-

tion is probably determined by humid conditions

needed for the growth and spread of the pathogen

(A)

Fig. 1. Risk areas for S. sapinea infection in South Africa. (A) The bioclimatically modelled probability of occurrence surface for S. sapinea

distribution. Black dots indicate known distribution records for this species. Perimeters of regions which encompass approximately 90% of

commercial pine plantations are indicated. (B) Modelled surface with probability of occurrence values greater than 0.75 and a standard error

less than 0.15, together with mean annual hail occurrence patterns (adapted from Le Roux and Olivier, 1996).
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(Conradie et al., 1990). Environmental conditions

prevailing at locations where C. cubensis exists, were

thus investigated (Table 1). Using the minimum and

maximum values of each climatic parameter as limits,

the corresponding homoclime area, which matched

these climate values in South Africa was identified

(Fig. 2A). This potential habitat defines the broad

scale limits of the pathogen’s possible distribution, but

does not provide the same resolution associated with

models capable of predicting regions with higher

probabilities for disease development. The degree of

congruence between the potential habitat and areas

most at risk of C. cubensis infection was investigated

more thoroughly using the predictive modelling

approach previously described (Erasmus et al., 2000).

The same set of five variables used for S. sapinea

was used for modelling the predicted habitat of C.

cubensis. The analysis identified the coastal area of

KwaZulu-Natal, as well as a few smaller interior areas

from northern KwaZulu-Natal, Mpumalanga and the

Limpopo Province, as possible distribution areas for

the pathogen (Fig. 2B). However, at a probability of

occurrence value of greater than 0.5 only 47 grid cells

were identified. These were clustered mainly in a band

not more than 40 km wide along the KwaZulu-Natal

coast.

The limited distribution of C. cubensis in South

Africa, and its climate-dependent occurrence, raises

questions regarding the possible effects of climate

change on its future distribution patterns. Although

(B)

Fig. 1. (Continued )
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climate change modelling was conducted using only

three variables as model predictors, the expected dis-

tribution (Fig. 3) from historic climate data (solid cells)

corresponded well with the modelled distribution

derived from five variables (see Fig. 2B). The climate

affected distribution (hatched cells) indicates a range

shift to the region west and bordering the region of the

current expected distribution, as well as a small area in

the far north of the country. Grid cells selected, repre-

sented areas with a predicted probability of disease

occurrence greater than 0.5. Most of the distribution

areas predicted under climate change conditions

(Fig. 3) also border, but do not overlap, the areas

identified in Fig. 2A. This confirms that these areas

would only become a potential habitat for the pathogen

once temperature and rainfall patterns have altered.

Table 1

Geographical distribution of C. cubensis and environmental conditions at these localities

Country Island/town/district Annual

rainfalla

(mm)

Maximum annual

temperaturea

(8C)

Minimum annual

temperaturea

(8C)

Mean annual

temperaturea

(8C)

Elevationb

(m)

Reference or

source

Brazil Sao Paulo 2847 26.7 18.2 22.4 635 Hodges and

Reis (1974)

Brazil Aracruz 1862 31 22.1 26.5 67 Alfenas et al. (1983)

Brazil Brazilia 3030 27.3 18 22.6 1087 MJWc

Brazil Vitoria 1679 31.1 22.8 26.9 68 MJW

Brazil Piracicaba 2701 28.5 19 23.7 512 MJW

Equador Quevedo 4307 28.3 15.6 21.9 99 MJW

Colombia Cali 1643 27.1 16.4 21.7 770 MJW

Argentina Posadas 1679 32.5 20.3 26.4 72 MJW

Surinam 2920 29.5 21.3 25.1 Boerboom and

Maas (1970)

Venezuela Acarigua 438 30.1 18.4 24.2 199 MJW

Mexico Los Choapas 1424 26.4 17.5 21.9 13 MJW

Mexico Villahermosa 2008 28.1 18.3 23.2 9 MJW

Cuba Santiago de las

Vegas

694 26.6 15.6 21.1 116 Bruner (1916)

Trinidad & Tobago Trinidad 767 29.1 20 24.5 Hodges (1980)

Puerto Rico Toro Negro

State Forest

986 25.4 18.5 21.9 543 Hodges et al. (1979)

Puerto Rico Rio Abajo State

Forest

986 25.4 18.5 21.9 297 Hodges et al. (1979)

USA, Florida La Belle 767 23.6 13 17.7 7 Hodges et al. (1979)

Hawaii Kauai 1250* 23.7 15.4 19.5 Hodges et al. (1979)

Western Samoa Western Samoa 4709 30 24.2 27.2 Hodges (1980)

Malaysia 1314 29.3 20.9 25.1 Hodges et al. (1986)

Indonesia Bangka Island 3030 29.6 22.6 26.1 Hodges et al. (1986)

Indonesia Prapat 2336 30.6 15 22.8 910 MJW

Indonesia Bali 3358 29.9 20.1 24.9 MJW

Congo Pointe-Noire 1898 29.7 23.1 26.4 1 Roux et al. (2000)

Cameroon Edéa 657 31.4 22.1 26.7 21 Alfenas et al. (1983)

Tanzania Zanzibar 876 32 22.9 27.4 Hodges et al. (1986)

India, Kerala State Wynad 5217* 30.3* 19.8* 24.9 1100* Sharma et al. (1985)

India, Kerala State Ernakulam 3008* 30.9* 24.3* 27.6 <200* Sharma et al. (1985)

India, Kerala State Trivandrum 1697* 31.0* 23.8* 27.3* <200* Sharma et al. (1985)

Minimum value 438 23.6 13 17.7 1

Maximum value 5217 32.5 24.3 27.6 1100

a All values from New et al. (1999, 2000), except those indicated by * are from references as listed.
b All values from GTOPO30 global digital elevation model, except those indicated by * are from references as listed. Elevation was not

considered when the specific location was not known.
c Reported by M.J. Wingfield.
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4. Discussion

Indigenous tree species suitable for short rotation

plantations in support of timber and pulp production

are extremely scarce in South Africa. Thus the

local commercial forestry industry depends almost

entirely on exotic tree species, grown in plantations.

Although these exotics have been spatially separated

from many of the diseases that occur in their areas of

origin, diseases already present in the country

impart significant losses (Wingfield and Swart, 1994;

Wingfield et al., 2001). Successful disease manage-

ment requires integrated management strategies based

on extensive knowledge of the pathogens concerned.

Research to assess and mitigate the disease risks to the

forestry industry and to optimise production strategies

from pathogens should include the identification of

focal organisms likely to be agents of future distur-

bance, surveys of their abundance and impact, and an

improved understanding of the direct environmental

effects of temperature and moisture on their biology.

Conclusions should ideally be expressed within a

(A)

Fig. 2. Risk areas for C. cubensis infection in South Africa. Black dots indicate known distribution records for this species. (A) Area predicted

as suitable habitat for C. cubensis based on matching of climatic conditions from other locations. The shaded area represent a region with an

elevation between 1 and 1100 m, mean annual precipitation between 438 and 5217 mm, minimum annual temperature between 13 and

24.3 8C, maximum annual temperature between 23.6 and 32.5 8C, and mean annual temperature between 17.7 and 27.6 8C. Names of

provinces of South Africa are indicated. (B) The bioclimatically modelled probability of occurrence surface for C. cubensis distribution.
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spatially explicit modelling framework that predicts

regional production, disease and disease affected pro-

duction patterns for historic climate data, projected

climate change scenarios, and appropriate ground

truthing (Ayres and Lombardero, 2000). In this study

we have focussed on modelling the potential distribu-

tions of two economically important South African

plantation pathogens. The results have shown clearly

that the climate affected distribution of both pathogens

under current and future climate conditions will

impact on the local forestry industry.

S. sapinea has been present in South Africa since

the early 1900s, and was selected for this study as the

dieback associated with it is considered to be the most

important limitation to pine production in the country

(Zwolinski et al., 1990; Swart and Wingfield, 1991a).

The ability of the pathogen to persist in asymptomatic

association with its host (Smith et al., 1996; Stanosz

et al., 1997) and the high level of genotypic diversity

of S. sapinea in South Africa (Smith et al., 2000),

complicates disease management strategies (McDonald

and McDermott, 1993). Although factors governing

Sphaeropsis disease manifestation are clearly complex,

we attempted to correlate the range of this pathogen

with climate at a regional scale. Based on a suite of

five environmental variables, an area stretching

from the Limpopo Province, through Mpumalanga,

KwaZulu-Natal, Eastern Cape and Western Cape

Provinces was identified as potential risk areas for

Sphaeropsis disease. This area closely corresponds to

(B)

Fig. 2. (Continued ).
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the regions utilised for commercial forestry in South

Africa, confirming the potential threat of Sphaeropsis

dieback in all susceptible pine plantations.

The use of a statistical re-sampling technique

enabled the identification of a core risk region for

Sphaeropsis occurrence with a consistently high prob-

ability of disease occurrence. Isolated cases of exten-

sive losses from Sphaeropsis have been reported from

the Southern Cape, an all year rainfall region, follow-

ing a single severe hail storm and infestation of trees

by cambiophagous insects (Zwolinski et al., 1990,

1995). The core risk region, however, falls in the

summer rainfall region of South Africa, which reg-

ularly experiences thunderstorms and hail. When the

expected annual hail occurrences are viewed together

with the Sphaeropsis risk area, it is clear that the

production of susceptible pine species will necessarily

be affected by Sphaeropsis dieback along the eastern

Mpumalanga escarpment. Thus, in this region the

emphasis should be on planting Pinus spp. which

are not susceptible to S. sapinea infection.

Disease severity and distribution associated with C.

cubensis infection appears to be much more directly

related to climatic conditions than is the case for

S. sapinea. We used two different approaches—through

either homoclime matching, or modelling the predicted

Fig. 3. The modelled distribution for C. cubensis derived from mean annual precipitation, minimum monthly temperature and maximum monthly

temperature from historic climate data (solid cells) or under a climate change scenario (hatched cells). Black dots indicate known distribution

records for this species. Perimeters of regions which encompass approximately 90% of commercial eucalyptus plantations are indicated.
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distribution—to identify general and high-risk areas for

C. cubensis infection. Superimposing the results mod-

elled from historic climate data (predicted distribution,

Fig. 2B) onto the broad potential habitat (Fig. 2A)

illustrated that the modelled distribution of C. cubensis

only extends over less than a fifth of the suitable habitat

identified through homoclime matching. The reason

for this is that large parts of the area selected as potential

habitat fall only marginally within the global climate

parameter limits obtained from Table 1.

In the case of mean annual rainfall, the fungus has

been reported from locations with rainfall figures ran-

ging from less than 500 to more than 5000 mm per

annum (see Table 1). However, 72% of these locations

record more than 1200 mm annually, and in Brazil the

severity of the disease has been shown to be more

intense in areas of high rainfall (Hodges et al., 1979).

Although no attempt was made here to investigate the

different contributions of temperature and rainfall on

the fungus’s biology, it has been shown that colonisa-

tion of young Eucalyptus plants by C. cubensis follow-

ing artificial inoculation under greenhouse conditions

was inhibited by drought stress (Swart et al., 1992).

South Africa is relatively dry, and only about 3% of the

country receives more than 1000 mm per year. This

includes the narrow strip along the eastern coast where

most of the local occurrences of C. cubensis have been

recorded. Therefore, the predicted distribution mod-

elled from historic climate data (Fig. 2B), which repre-

sents a probability of occurrence based on a suite of

relevant parameters, probably more accurately reflects

the actual risk areas for Cryphonectria canker than the

potential habitat area identified through the homo-

clime/climate matching approach (Fig. 2A). Although

a much smaller area of South Africa is suitable for the

occurrence of C. cubensis than for S. sapinea, these

areas are also exactly within extant forestry areas.

Increases in atmospheric greenhouse gases are

expected to have significant impacts on the world’s

future climate. There is evidence that the anomalous

climate of the past century has already affected the

physiology, distribution and phenology of some spe-

cies in ways consistent with theoretical predictions

(Hughes, 2000). Projected climate change will

obviously also impact on forest growth and composition

(Lindner, 2000). An investigation of local forestry

regions showed that climate changes could lead to

substantial loss of production in the core areas pre-

sently used by the forestry industry (Fairbanks and

Scholes, 1999). Climate will however also impact

indirectly on forests by altering disturbance patterns

from pathogens (Loehle and LeBlanc, 1996; Ayres and

Lombardero, 2000). For C. cubensis in South Africa,

the distribution predicted under the climate change

scenario suggests that the fungus could in the future

establish itself in areas inland of where it is currently

considered a problem. Most of these areas already

support eucalypt plantations. Of greatest concern here

is that many of the areas that would become suitable

for C. cubensis are currently planted with E. grandis

seedlings or clones. E. grandis is especially suscep-

tible to C. cubensis infection in other parts of the world

and in South Africa (Hodges et al., 1979; Conradie

et al., 1990) and losses could be severe.

This study aimed to investigate gradual, long-term

distribution changes (Easterling et al., 2000). These

changes are the sum of seasonal range expansions and

contractions as determined by a complex interaction

of climate and community level processes, with cli-

mate being more important at broader temporal scales.

Theoretically our modelling technique would be

equally suitable for use with short-term climate and

distribution data; the calculations are blind to the

source of the data. However, we feel that such

short-term (intra-annual) modelling results based on

weather data would not be robust. The reason for this

concern lies with the nature of the short-term climate

data needed for such an analysis. There has been

significant improvements in the reliability of decadal

scale climate change predictions (Zwiers, 2002;

Knutti et al., 2002; Stott and Kettleborough, 2002)

and such developments allow for insightful analyses of

distribution shifts, either historically (Parmesan et al.,

1999; Pounds et al., 1999) or predicted (Erasmus et al.,

2000; Peterson et al., 2002). It is true that many

currently relevant ecological concerns operate at finer

temporal scales (Walther et al., 2002). However, at

increasingly finer scales (i.e. seasonal or intra-annual),

the paucity of data on the relative importance of

physiological processes (Chown and Gaston, 1999),

community processes and climate on population

dynamics (Stenseth et al., 2002), renders model out-

puts extremely uncertain. In addition, an increase in

the frequency of extreme climate events is predicted to

co-occur with climate change (Easterling et al., 2000).

Such extreme events would have a large negative
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impact on the reliability of a fine temporal scale

model, and as such provides additional support for

avoiding intra-annual distribution shift predictions.

Forestry management decisions are based on infor-

mation pertaining to current and future resource con-

ditions, and many forest simulation models have been

widely used to provide information for sound decision

making. Different applications require different types

of models and varying modelling approaches (Peng,

2000). We have investigated the use of a bioclimatic

model to predict the distribution of two important South

African forestry pathogens. This provides the first such

study, and provides valuable information to the South

African Forestry Industry. The results can be integrated

into other existing decision support systems to meet the

demands of forest management and pathogen control

under uncertain future environmental conditions.

Further refinement, and the use of more detailed and

systematically collected data for diseases will make it

possible to improve systematic plantation risk assess-

ment for management and planning purposes.
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