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Abstract 
More than a decade after its initial discovery in the Western Cape, the Eurasian 
woodwasp, Sirex noctilio, has spread to the southern parts of KwaZulu-Natal 
posing a serious threat to pine species in the region. Whilst foresters are able to 
provide broad scale assessments of S. noctilio infestation, there are no existing 
frameworks in place to provide quantifiable measurements of the spatial or 
temporal distributions of this damaging agent, and the impact it has on commercial 
pine forestry. Remote sensing technology offers an alternative to the current broad 
scale methods of assessing forest health. In this study, high resolution (50cm) 
imagery was acquired over commercial Pinus patula vegetation of varying age 
classes which had been ground assessed and ranked on an individual tree crown 
basis using a visual severity scale (i.e. healthy, green, red and grey). A series of 
ratio and linear based vegetation indices were calculated and compared to the 
different S.noctilio crown condition classes. Of the vegetation indices calculated, 
significant differences (p<0.001) between the pre-visual (healthy and green) and 
visual (red and grey) crown condition classes were obtained, using the normalised 
difference vegetation index (NDVI) and the green normalised difference vegetation 
index (GNDVI). Canonical variate analysis further revealed that greater 
discriminatory power between the different S.noctilio crown condition classes is 
obtained when using NDVI as compared to the other vegetation indices. Overall 
the study demonstrated the importance of using vegetation indices obtained from 
high resolution airborne imagery to discriminate between healthy trees and trees 
that were in the visual stage of infestation (red and grey stages).  
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Introduction 
 
More than a decade after its initial discovery in the Western Cape (Tribe, 1995; 
Tribe & Cillie, 2004), the Eurasian woodwasp, Sirex noctilio, has spread to the 
southern parts of KwaZulu-Natal, posing a serious threat to pine species in the 
region. In an effort to minimise the potential threat to commercial pine production 
in the region, an integrated management strategy combining detailed detection 
and monitoring methods, silvicultural treatments and biological controls has been 
implemented on an industry wide basis in South Africa. The primary control of 
established S.noctilio populations is achieved by biological means using the 
nematode Deladenus siricidicola and parasitic wasps such as Ibalia leucospoides 
and Megarhyssa nortoni; while silvicultural methods such as thinning are carried 
out to improve tree vigour and thereby keep damage within acceptable levels. 
However, successful implementation, of the above control measures, depends on 
our ability to spatially quantify the severity and extent of infestation so that forest 
managers can adopt the most appropriate course of intervention before the stand 
reaches a point of non-recovery. For example, moderate S.noctilio infestations 
(<10%) require the inoculation of infested trees with nematodes whereas heavy 
infestations (between 10 and 50%) would require sanitization and salvage 
operations to be implemented. Additionally, Geographic Information Systems 
(GIS) and forest planning systems, which include harvesting schedules, timber 
volume analysis and species growth models have been developed to help 
foresters manage affected areas, and these systems require accurate spatial 
information on the severity and extent of S.noctilio damage. 
 
Current methods used to identify the severity and extent of S.noctilio infestation 
include broad scale visual aerial reconnaissance, followed by field based 
exercises to verify the results. Although visual assessments of infestation are 
widely used to measure forest health (Haara & Nevalainen, 2002) the 
effectiveness of visual assessments are questionable because  they are 
qualitative, subjective and dependent on the skill of the surveyor (McConnell et al., 
2000; Stone & Coops, 2004). Previous forest health studies have shown 
estimation errors between 25 and 75% (Belanger & Anderson, 1988). The ability of 
remote sensing technology to augment traditional forest health evaluation 
procedures has been demonstrated by researchers for a diverse range of pests 
and pathogens (Muchoney & Haack, 1994; Vogelmann & Rock, 1995; Majeed, 
1999; Bonneau et al., 1999a; Franklin et al., 2003; Wulder & Dymond, 2004) and 
imagery types (Vogelmann & Rock, 1995; Bonneau et al., 1999b; Coops et al., 
2003). Using remote sensing to detect infestations is based on the assumption 
that the canopy damage caused by the pest S.noctilio creates differences in foliar 
constituents, foliage amount and canopy structure (Entcheva et al., 2004) thus 
affecting the absorption of light energy thereby altering the reflectance spectrum of 
the tree (Entcheva et al., 1996; Stone et al., 2001). Thus by reliably measuring the 
reflectance spectrum, the health status of the tree can be determined. 
 
 
Overview of vegetation indices  
 
Researchers have studied the spectral effects of declining forest health (Ahern, 
1988; Stone et al., 2001; Entcheva et al., 2004; Stone & Coops, 2004) and the 
various methods (Collins & Woodcock, 1996; Radeloff et al., 1999; Levesque & 
King, 2003; Skakun et al., 2003; Wulder & Dymond, 2004) which can be then used 
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to detect the health status of trees. It has been reported that plants under stress 
display a decrease in canopy reflectance in the lower portion of the near infrared 
(NIR), a reduced absorption in the chlorophyll active band (red) and a consequent 
shift in the red edge (Carter & Knapp, 2001). For example, Entcheva et al., (1996) 
found that reflectance at the 698 nm wavelength was significant in explaining 
needle reflectance response to southern pine beetle damage in Pinus elliottii  
while Ahern, (1988) found reflectance at 700 nm to be an indicator of needle 
stress in lodgepole pine caused by mountain beetles.  
 
The most widely used vegetation indices (VI) exploit these spectral characteristics 
i.e. chlorophyll absorption by vegetation in the red portion of the spectrum and the 
high reflectance by vegetation in the NIR portion (Tucker, 1979; Treitz & Howarth, 
1999). Additionally, the advantage of using remotely sensed VI includes the 
removal of variability caused by canopy geometry, soil background, sunview 
angles and atmospheric conditions (Gilabert et al., 2002). Consequently, a number 
of narrow (Leckie et al., 2004; Stone and Coops, 2004) and broad band vegetation 
indices (Vogelmann, 1990; Collins & Woodcock, 1996) have been successfully 
used to assess changes in the reflectance due to the declining health status of the 
tree. For the purpose of this study we have generally divided the broadband VI into 
two categories i.e. ratio based indices and linear based indices, although other 
categorisation may be appropriate for other purposes or imagery types (e.g. 
narrowband red edge indices). It is not our intent to provide a complete review of 
VI, for a complete review see Jackson & Huete (1991) and Thenkabail et al., 
(2002), but we will review certain VI to the extent necessary to formulate our 
hypothesis regarding which indices would successfully detect and discriminate 
forest canopy damage caused by S.noctilio infestations. 
 
Ratio based Indices 
 
Ratio based indices operate by contrasting the intense chlorophyll pigment 
absorption in the red portion against the high reflectance, due to multiple 
scattering in the NIR portion of the electromagnetic spectrum (Elvidge & Chen, 
1995). The most widely used ratio based indices such as the ratio vegetation index 
(RVI) (Jordan, 1969), normalized difference vegetation index (NDVI) (Rouse et al., 
1973), difference vegetation index (DVI) (Tucker, 1979) and green normalised 
difference vegetation index (GNDVI)(Gitelson & Merzlyak, 1998) respond to these 
differences in the near infrared and visible regions (Lillesand et al., 2004).  
 
For example, using Landsat MSS data, Nelson (1983), examined image 
differencing, image ratioing and vegetation index differencing in detecting gypsy 
moth defoliation and found the    NIR /red ratio to be more useful in detecting 
defoliated areas than any of the other examined VI. Results from a study using 
Landsat TM conducted by Vogelmann (1990) indicated that NDVI provided an 
accurate assessment of insect induced defoliation damage to deciduous trees. 
NDVI also appeared to be very good at discriminating between high, medium and 
low deciduous damage categories; however the NDVI was only partially 
successful in measuring conifer forest damage (Vogelmann, 1990). Ekstrand 
(1994) on the other hand, suggested that moderate defoliation damage in Norway 
spruce (Picea abies) could be estimated using Landsat TM band 4 (NIR) and 
classification accuracies of 80% were achieved in sites that were predominately 
spruce in composition. The study concluded that ratio based algorithms are more 
applicable to regions suffering from both chlorosis (yellowing) and defoliation and 
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were inappropriate in areas where defoliation is the sole symptom of forest decline 
(Ekstrand, 1994).  
 
Linear Based Combinations 
 
Linear combinations of spectral bands have been used to develop physically 
significant indices (Jackson, 1983) such as the tasseled cap transformation (TCT) 
which was developed by Kauth and Thomas (1976). Using Landsat MSS bands, 
Kauth and Thomas (1976) established four new indices (brightness, greenness, 
yellowness and nonsuch) in the spectral data which could be useful for vegetation 
monitoring. Linear based VI are especially useful for the discrimination of 
vegetation from the soil background (Jackson, 1983) because linear VI are based 
on a predetermined soil line rather than the inherently assumed soil line underlying 
the ratio based NDVI (Lawrence & Ripple, 1998). Crist and Cicone (1984) later 
extended the transformation concept to Landsat TM data and more recently TCT 
have been calculated for high resolution, Ikonos (Horne, 2003) and QuickBird 
imagery (Yarbrough et al., 2005). Several studies using broad band imagery 
(Collins & Woodcock, 1996; Price & Jakubauskas, 1998; Sharma & Murtha, 2001; 
Skakun et al., 2003; Healey et al., 2005; Jin & Sader, 2005) have shown the value 
of using the TCT when assessing forest health condition. According to Skakun et 
al. (2003) this is largely due to the fact that colour changes (chlorosis) associated 
with damaged trees are organized along the principal directions of brightness 
(TCB), greenness (TCG) and wetness (TCW) which are determined by the TCT. 
Additionally, Sharma & Murtha (2001) reported that differences between mean 
TCB, TCG and TCW of attacked stands and healthy Pinus contorta were 
statistically significant. Similar results were reported by Price & Jakubauskas 
(1998) who suggested that when using TCT components it was possible to 
distinguish stands that were progressively thinned as a result of beetle damage.  
 
Research has shown that ratio and linear based vegetation indices have the 
potential to successfully quantify the severity and extent of infestation caused by 
various pests and pathogens. However, to date, no research has examined the 
benefits of using these vegetation indices to detect forest canopy damage caused 
by S.noctilio. Additionally, there is a need to identify small clusters or individual 
trees because pine plantations infested by S.noctilio have a scattering of dead and 
dying trees (Haugen et al., 1990; Haugen & Underdown, 1990). This study intends 
to address these issues by firstly, using VI derived from high resolution imagery 
(50cm) to characterise S.noctilio induced stress in Pinus patula compartments. 
This allows for the identification of individual crown characteristics, thereby 
exploiting both spectral and spatial resolutions. Secondly, we intend to test the 
relative strength of various ratio and linear based vegetation indices in 
discriminating the crown condition classes associated with S.noctilio infestations. 
The overall objective of this study is to develop remote sensing techniques that will 
assist in the management of S.noctilio infestations. Once developed and tested, 
these techniques offer the potential to be applied operationally and should improve 
our ability to map those stands at high risk of infestation.  
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Materials and Methods 
 
Description of the Study Area 
 
The study area is approximately 1750 ha and forms part of the Sappi Pinewoods 
plantation which is dominated by Pinus patula compartments. The site is located 
approximately 30 km outside the town of Pietermaritzburg, KwaZulu-Natal.  The 
average altitude for the site is 1190m with an average air temperature of 16.1° C. 
The mean annual rainfall of the area is 916mm.The terrain consists of low 
mountains and undulating hills. The geology of the area is a mixture of mudstone, 
sandstone, tillite, ampholite and basalt. Soils in the area are mostly sandy-clay and 
sand-clay loams (Macfarlane, 2004).  
 

 
Figure 1: Location of the study area 

 
Inoculation, clear felling and thinning operations have been carried out in 
Pinewoods since 2003, in an effort to reduce the high S.noctilio infestation rates 
present within certain stands. 
These management interventions are carried out based on age stratification 
guidelines i.e. less than 7 years, from 8 to 9 years, 10 to12 years and older than 
13 years .The age strata have been developed to account for insect-tree 
dynamics. S.noctilio typically attacks older stressed trees however as the insect 
population increases , an increasing percentage of healthy pine trees are attacked 
(Haugen et al., 1990; Ciesla, 2003). Therefore intervention measures such as 
clear felling operations would be implemented in older compartments (> 13 years) 
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in order to salvage “utilizable” trees, while inoculations would be carried out in 
stands that are between 10 to 12 years old to reduce S.noctilio populations from 
reaching epidemic proportions. 
 
Data acquisition 
 
High Resolution (50cm) multispectral imagery was acquired on the 9th September 
2005 by Land Resources International (LRI) Inc, Pietermaritzburg (South Africa) 
with their manufactured LrEye aerial imaging system. The LrEye sensor is 
composed of a series of four monochrome Sony cameras. Each camera collects 
data for one of the bands shown in Table 1.The resulting four bands are registered 
to form an image with four co-registered bands that are referenced to the Gauss 
conformal projection (central meridian: 31). To minimise bidirectional reflectance 
and to cover the study area, flight lines were oriented away from the sun and flown 
as a series of north-south strips. Field data collection took place one week after 
the image was acquired. 
 

Table 1: Spectral range of Landsat TM compared to the LrEye sensor 
Band TM spectral range (nm) LREye spectral range (nm) Colour 
1 0.45-0.52 450 to 480nm with the peak at 465.88nm Blue 
2 0.52-0.60 550 to 580nm with the peak at 568.42nm Green 
3 0.63-0.69 650 to 680nm with the peak at 664.67nm Red 
4 0.76-0.90 850 to 900nm with the peak at 870.53nm Near Infrared
 
 
Field Data Collection  
 
A stratified random sampling technique was adopted for this study. Pine 
compartments that were harvested, or that were recently planted, were excluded 
from the sample. A 50 m x 50 m grid was generated over the study area and 10 
grid cells were randomly selected from each predetermined age stratum (i.e. less 
than 7 years, from 8 to 9 years, 10 to12 years and older than 13 years). This age 
stratification was adopted because it reflects current S.noctilio management 
guidelines.  At the centre point of each grid cell, a 10 meter radius plot was 
created. Tree crowns located within each plot were manually identified on the 
LrEye data and subsequently located in the field using a Global Position System 
(GPS). In total, 782 trees were assessed for S.noctilio infections based on a visual 
severity scale that is shown in Table 2.This process was undertaken with the 
assistance of Sappi forest planners and technical staff who have a detailed 
understanding of the identification and classification of S.noctilio infestations. 
Additionally, trees that were classified as ‘red’ were destructively sampled to 
evaluate the presence of S.noctilio larvae.  
 

Table 2: The crown condition classes assessed in the ground survey 
Class Stages Visual Symptoms 
1 Healthy  No signs of S.noctilio infestation 
2 Green Green crown, presence of resin droplets, cambium stain, ovipositors 

found on the trunk and no needle loss 
3 Red Severe chlorosis , reddish brown canopy  and high needle loss 
4 Grey Emergence holes, no canopy , most branches intact and 100% needle 

loss 
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Vegetation Indices 
 
According to Coops et al., (2004) the method used to obtain the spectral 
reflectance of individual trees when using high resolution imagery is important 
because significant variation in brightness exists  depending on the pixel position 
within the crown. In a study conducted by Leckie et al., (1992) to account for 
effects of  the variation on individual crown delineation it was concluded that either 
the whole tree or the sunlit tree sampling methods were the most suitable methods 
to derive consistent and representative spectral response. In this study, the whole 
crown method was used, each of the selected crowns was manually delineated on 
the LrEye imagery and the crown spectral response extracted for the VI used in 
this study (Table 3).   
 

Table 3: Ratio based vegetation indices used in this study. 
 Vegetation Index Name Index Equation Reference 
1 Normalized difference 

vegetation index 
NDVI NDVI = (NIR−red)/(NIR + 

red) 
 

Rouse et al, 1973; 
Jackson, 1983 

2 Ratio vegetation index RVI RVI = NIR/red 
 

Jordan, 1969 

3 Difference vegetation 
index 
 

DVI 
 

DVI = NIR−red 
 

(Tucker, 1979) 
 

4 Green normalised 
difference vegetation 
index 

GNDVI GNDVI = (NIR – green)/  
(NIR + green) 
 

Gitelson and 
Merzlyak, 1998 

 
Tasseled cap transformation 
 
The Gram-Schmidt orthogonalization process was used to derive the tasselled cap 
transformation (TCT) coefficients. Initially, a soil line and the vector in the 
“brightness” direction are determined; subsequently from the “brightness” vector all 
other vectors (i.e. greenness and yellowness) are orthogonally calculated. 
Yarbrough et al., (2005) and Jackson (1983) provide a  mathematical description 
for calculating coefficients for n space indices using the Gram-Schmidt 
orthogonalization process .Coefficients (Table 4) are based on the grey level 
values (DN) of the LrEye imagery of the four land cover types i.e. wet soil, dry soil, 
green vegetation and senesced vegetation. Water was used to represent wet soil 
values because pixels representing wet soils were not found in the imagery. Dry 
soil values were collected from dirt roads while tree crowns represented green 
vegetation.Dry grass values were used to represent senesced vegetation. 
 
 

Table 4: Gram-Schmidt coefficients 
 B G R NIR 
Brightness (TCB) 0.337663 0.586272 0.638220 0.367348 
Greenness (TCG) -0.227113 -0.131965 -0.288569 0.920724 
Yellowness(TCY) 
 

0.097931 -0.781721 0.607311 0.102451 
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The resulting linear equations for brightness, greenness and yellowness are as 
follows: 
 
Brightness (TCB) = 0.337663 (blue) + 0.586272 (green) + 0.638220 (red) + 0.367348 (NIR) 
Greenness (TCG) = -0.227113 (blue) -0.131965 (green) -0.288569 (red) + 0.920724 (NIR) 
Yellowness (TCY) = 0.097931 (blue) -0.781721 (green) 0.607311 (red) + 0.102451 (NIR) 
 
Statistical Analysis 
 
We tested the hypothesis that ratio and linear based vegetation indices could 
differentiate among the various stages of infestation (i.e. healthy, green red and 
grey) caused by S.noctilio. Analysis was undertaken to compare the crown 
condition classes for each of the indices in order to determine which of the VI 
consistently discriminated at least some of the classes as determined by the visual 
severity scale (Table 2). This was tested using an analysis of variance (ANOVA) 
with a Tukey’s HSD post hoc test.  
 
Canonical variate analysis (CVA) is a multivariate statistical technique which 
discriminates among prespecified groups of sampling entities based on a suite of 
characteristics (McGarigal et al., 2000). The technique involves deriving linear 
combinations (i.e. canonical functions) of two or more discriminating variables that 
will best discriminate among the a priori defined groups (Mutanga, 2005). In this 
study vegetation indices (VI) are entered into the analysis based on their ability to 
increase group separation (i.e. crown condition classes). This reduces the number 
of indices to a subset that provides the best discrimination among classes. The 
best linear combination of VI is achieved by the statistical decision rule of 
maximising the among group variance, relative to the within group variance 
(Mutanga, 2005). The first discriminant function provides the best separation 
among classes, while the second function separates classes using information not 
used in the first function and so forth. Additionally, the functions will be 
independent or orthogonal, that is, their contributions to the discrimination between 
groups will not overlap (Lawrence & Labus, 2003). Based on this background, we 
used CVA to exhibit optimal separation of the crown condition classes based on 
the linear transformation of the calculated VI, and establish which VI are most 
related to the separation of these classes. 
 
We used the leave-one-out cross validation technique for estimating the error rate 
conditioned on the training data. The advantage of using the leave-one-out cross 
validation technique is that all the data is used for estimating error. Using this 
cross validation technique, each observation is systematically removed, the 
canonical function re-estimated and the excluded observation classified (Mutanga, 
2005). A confusion matrix is then constructed to compare the field (true) crown 
condition classes with the class assigned by the VI to the sample dataset. It 
depicts accuracies of the crown condition classes (producer’s and user’s 
accuracies). Producer’s accuracies are calculated by dividing the number of 
correctly classified trees in each crown condition class by the number of training 
data used for that class (i.e. column total in the confusion matrix). User accuracies 
are computed by dividing the number of correctly classified trees by the total 
number of trees that were classified in that crown condition class (i.e. row total in 
the confusion matrix). Additionally a discrete multivariate technique called kappa 
analysis that uses the k (“KHAT”) statistic as a measure of agreement with the 
reference data was calculated (Congalton & Green, 1999; Skidmore, 1999). This 
statistic serves as an indicator of the extent to which the percentage correct values 
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of an error matrix are due to “true” agreement versus “chance” agreement 
(Lillesand et al., 2004). If the kappa coefficients is one or close to one then there is 
perfect agreement between training and test data. Conceptually k can be defined 
as:  
 
k = observed accuracy –chance agreement       (1) 
                  1-chance agreement 
 
 
Results 
 
We tested the hypothesis that ratio and linear based vegetation indices would 
discriminate among the various crown condition classes by conducting a one-way 
ANOVA. Of the vegetation indices calculated, significant differences (p<0.001) 
were obtained using NDVI, GNDVI, DVI, RVI, TCG and TCB. A one-way ANOVA 
shows that there is a significant difference between the vegetation indices and the 
S.noctilio crown condition classes, but it does not show which crown condition 
classes are different. We therefore executed a Tukey’s HSD post hoc test in order 
to establish differences between each of the crown condition classes (i.e. healthy, 
green, red and grey). Results with their respective level of significance are shown 
in the table below.   
 

Table 5: Analysis of variance results with a Tukey’s HSD post hoc test. Class 1 
(healthy), class 2 (green), class 3 (red) and class 4 (grey). 

 NDVI  1  2  3  4  TCG  1  2  3  4
1 .. ** * *  1 .. ** * * 
2 ** .. * *  2 ** .. * * 
3 * * .. *  3 * * .. * 
4 * * * ..  4 * * * .. 
GNDVI  1  2  3  4  TCB  1  2  3  4
1 .. ** * *  1 .. ** ** * 
2 ** .. * *  2 ** .. ** * 
3 * * .. *  3 ** ** .. **
4 * * * ..  4 * * ** .. 
DVI  1  2  3  4  NIR  1  2  3  4
1 .. ** * *  1 .. ** * * 
2 ** .. * *  2 ** .. * * 
3 * * .. *  3 * * .. * 
4 * * * ..  4 * * * .. 

P< 0.001 =*, Not Significant =** 
 
The results indicate that both ratio and linear based indices are poor at 
discriminating between class 1 (healthy) and class 2 (green stage). However, the 
VI tested are capable of discriminating between the previsual (classes 1 and 2) 
and visual crown condition classes (classes 3 and 4). The most significant degree 
of separation occurs between class 1 and classes 3 and 4 and between class 2 
and classes 3 and 4. All indices are capable of discriminating between these 
classes except for TCB which can only discriminate between class 1 and class 4 
and between class 2 and class 4. Based on the results from ANOVA, it is difficult 
to determine which index has the best discriminatory power. Therefore, we carried 
out a canonical variate analysis and included all indices (discriminatory variables) 
except for the TCB component. Additionally, to improve the discriminatory power 
of the VI, class 2 (green stage) was grouped with class 1 (healthy trees) while the 
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rest of the classes remained the same i.e. class 3 (red stage) and class 4 (grey 
stage) 
 
Canonical variate analysis (CVA) results  
 
We tested the relative strength of various ratio and linear based vegetation indices 
in detecting S.noctilio infestations by conducting a canonical variate analysis 
(CVA). Table 6 shows the eigenvalues as well as the factor structure matrix from 
the canonical variate analysis using 3 crown condition classes (i.e. healthy, red 
and grey stages). The measure of information contained in the functions is 
represented by the eigenvalues corresponding to those functions. The eigenvalues 
are interpreted as the ratio of variances along each function (Richards, 1993). The 
largest portion of the explained variance (97.5%) is contained in the first canonical 
function while the reminder is contained in the second function (2.5%). The factor 
structure coefficients contained in the matrix below represent the correlations 
between the variables and the canonical functions and are used to interpret the 
canonical functions (McGarigal et al., 2000).  Results indicate that the highest 
factor structure coefficients are contained in the NDVI (0.633) and the GNDVI 
(0.629). The second canonical function also shows that one of the largest 
contributions is contained in the GNDVI (0.605) and to a lesser extent NDVI 
(0.369), however the magnitude for the second canonical function is much smaller 
that that of the first canonical function. The scatter plot in Figure 2 shows the 
position of the crown condition classes in canonical space. 
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Figure 2: Scatterplot of two canonical functions produced by canonical variate 

analysis 
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Table 6: Factor structure matrix representing the correlation between variables and 
canonical functions (3 classes) 

 Function 1 Function 2
NDVI .633 .369 
GNDVI .629 .605 
DVI .559 .550 
TCG .500 .669 
NIRR .484 .463 
Eigenvalue 0.961 0.025 
% Variance 97.5 2.5 

 
 
Classification  
 
To further investigate the effectiveness of high resolution airborne imagery to 
discriminate between crown condition classes we classified the samples using 
Fisher’s linear discriminant functions(McGarigal et al., 2000; Mutanga, 2005).To 
test the predictive discriminatory power of the canonical functions we used the 
leave-out-one technique for estimating the error rate conditioned on the training 
data. In the leave-out-one technique each observation is systematically dropped 
and the canonical function re-estimated and the excluded observation classified. 
The confusion matrix including the kappa statistic, user accuracy and producer 
accuracies are shown in Table 7. 
 
Table 7: Confusion matrix showing the predicted accuracy of Sirex noctilio using a 

3 level classification system: class 1 (healthy), class 2 (red), and class 3 (grey) 
Class 1 2 3 UA 
1 695 2 2 99.43
2 8 26 3 70.27
3 2 3 11 68.75
PA 98.58 83.87 68.75  
KHAT 0.79    

 
 
Discussion 
 
High resolution remote sensing provides a reasonable and robust tool to improve 
our ability to spatially quantify the severity and extent of Sirex noctilio infestations 
while not excluding the importance of visual assessments made by forest health 
experts. Both ratios and linear based vegetation indices are able to significantly (p 
< 0.001) discriminate between the previsual (healthy and green) and the visual 
stages of infestations (red and grey).Canonical variate analysis further reveals that 
greater discriminatory power between the different crown condition classes is 
obtained when using NDVI as compared to the other vegetation indices. Accuracy 
assessments show that NDVI is successful in locating and predicting the condition 
of tree canopies on the imagery when crown condition classes are reduced to a 
three classification system, in which case producer accuracies range from 84% 
(red stage) to 69% (grey stage) . The results obtained from this study are 
comparable to previous studies on declining forest health (Vogelmann, 1990; 
Leckie et al., 2004; Wulder et al., 2004; Leckie et al., 2005) and emphasize the 
importance of the visible and NIR bands when studying the effects of declining 
forest health especially  when infestation results in foliar discolouration. 
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Mapping the red stage of infestation is regarded as a priority among forest 
managers because it gives an accurate indication of the severity and extent that is 
taking place that year (current infestation) (Leckie et al., 2005). Additionally, the 
depiction of infestation levels by mapping out the red stage of infestation meets 
current operational requirements. Forest managers can now quantify the potential 
effects of S.noctilio infestation on fibre supply and stand vulnerability, thereby 
allowing for the design of the most appropriate intervention measures.  
 
The difficulty in discriminating the green stage of infestation is in consistent with 
other studies that have attempted to classify light to moderate symptoms using 
high resolution remotely sensed imagery (Leckie et al., 2004; Leckie et al., 
2005).The success of discriminating green stage infestation  is dependent on the 
detection of subtle changes in the spectral reflectance of the tree (Ekstrand, 1994). 
Slight changes in the spectral reflectance of stressed vegetation, when measured 
by various broad band sensors, are often masked by the high degree of variation 
in reflectance caused by factors such as varying view geometry, illumination, and 
canopy density (Runesson, 1991).Given this limitation, hyperspectral remote 
sensing offers possibilities to investigate the early stages of infestations based on 
narrow bands using the entire electromagnetic spectrum. These narrow bands 
allow for the detection of detailed features which would otherwise have been 
masked (Schmidt & Skidmore, 2001). 
 
The performance of linear based indices as compared to ratio based indices was 
disappointing. However, previous  studies (Collins & Woodcock, 1996; Skakun et 
al., 2003) found changes in the tasseled cap wetness component (TCW) to be a 
good indicator of conifer mortality and the most consistent indicator of forest 
change due to the inclusion of the short wave infrared (SWIR) band. However in 
this study, the calculations of the tasselled coefficients were limited to the visible 
and NIR parts of the spectrum (400-900nm) and included only the tasselled cap 
brightness (TCB) and greenness (TCG) components. Additionally, spectrometer 
research conducted by (Leckie et al., 1988) regarding discolouration caused by 
the spruce budworm indicated that the SWIR regions are better than the visible 
and NIR for discrimination. Similarly, initial attack by Sirex noctilio changes the 
water balance of the attacked tree, (Neumann & Minko, 1981; Slippers et al., 
2003) ,so using a sensor that captures SWIR wavelength has the potential to 
improve overall classification accuracy as well as discrimination between crown 
condition classes. 
 
 
Conclusion 
 
The use of ratio and linear based indices calculated from high resolution imagery 
has resulted in the successful detection and mapping of canopy damage caused 
by Sirex noctilio. Although it is difficult to discriminate between the healthy and 
green stages of infestation, classification accuracies are improved when using a 
three class crown condition index that differentiates between the healthy and the 
visual stages of infestation. More importantly, this has lead to the development of 
a detection and mapping framework that augments current management initiatives 
designed to reduce Sirex noctilio infestations. 
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