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Abstract
Reducing the impact of the siricid wasp, Sirex noctilio is crucial for the future
productivity and sustainability of commercial pine resources in South Africa. In this
study we present a machine learning model that serves as a spatial guide and allows
forest managers to focus their existing detection and monitoring efforts on key areas
and proactively adopt the most appropriate course of intervention. We implemented
the random forest model within a spatial framework to determine which pine forests
in Mpumalanga are highly susceptible to S. noctilio infestations. Results indicate
that a majority (63%) of pine forest plantations located in Mpumalanga have a high
susceptibility (>70%) to S. noctilio infestation. A KHAT value of 0.84 and F
measures above 0.87 indicate that the random forest model is a robust classifier that
produces accurate results. Additionally, the use of the backward variable selection
method enabled us to simplify the random forest modeling process and identify the
minimum number of explanatory variables that offer the best discriminatory power
and help in the empirical interpretation of the final random forest model. Overall,
the results show that pine forests that experience stress caused by evapotranspiration
and evaporation followed by rainfalls, especially during the summer months are
more susceptible to S. noctilio infestations.tgis_1229 709..726
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1 Introduction

Reducing the impact of the siricid wasp, Sirex noctilio (Hymenoptera: Siricidae) is
crucial for the future productivity and sustainability of commercial pine resources
in South Africa. S. noctilio has caused extensive damage to pine forests located in
KwaZulu-Natal and the Eastern Cape (Hurley et al. 2007, Ismail et al. 2007, Slippers
2006). It is now a major concern that the wasp will spread further north, to the
province of Mpumalanga, where the majority of the country’s pine forests are located
(DWAF 2005). Detection and monitoring methods have been identified as important
tools that provide forest managers with valuable information on the current location
and extent of S. noctilio infestations (Carnegie 2005, Haugen et al. 1990, Hurley et al.
2007, Ismail et al. 2007).

Researchers have recommended the combined use of aerial and field surveys
(Carnegie 2005, Haugen 1990) or the use of multispectral remote sensing (Ismail et al.
2007, 2008) to spatially quantify the location and extent of S. noctilio infestations.
Due to operational limitations (namely, cost and labor), and the initial scattered
pattern of infestations (Ciesla 2003), it is not feasible to implement any of the sug-
gested detection and monitoring methods consistently at national or provincial levels.
Therefore, the strength of current detection and monitoring methods would be greatly
enhanced if we could proactively identify pine forests that are highly susceptible to S.
noctilio infestations before any concerted monitoring and detection methods are imple-
mented. Maps showing the distribution of susceptible forests will then serve as a
spatial guide and allow forest managers to focus their existing detection and monitor-
ing efforts to these key areas (“hotspots”). Additionally, forest managers will have the
ability to adopt the most appropriate remediation measures (Carnegie 2005, Haugen
1990, Haugen and Underdown 1990, Neumann and Minko 1981, Spradberry and
Kirk 1978, Taylor 1981, Tribe and Cillie 2004) before the wasp can colonize these
uninfected pine forests.

Statistical modeling approaches have been increasingly recognized as important
tools that improve our understanding of forest pests and pathogens. When used within
a spatial framework, these models have the ability to identify areas that are highly
susceptible to infestations (Candau and Fleming 2005, Carnegie et al. 2006, Guo et al.
2005, Kelly and Meentemeyer 2002, Negron 1998, Rosso and Hansen 2003, van Staden
et al. 2004). For example, Carnegie et al. (2006) developed a model based on climate
matching in order to understand the potential global distribution of S. noctilio. However,
the explanatory variables used in the CLIMEX model (http://www.hearne.com.au/
products/climex) were based on the wasp’s endemic habitat conditions in Eurasia and
northern Africa. These areas experience dry warm summers and cool moist winters
(Carnegie 2005), whereas, in contrast, S. noctilio has successfully established itself in the
summer rainfall areas of South Africa (Hurley et al. 2007, 2008). With the exception of
the CLIMEX model, spatially-based studies that empirically relate the potential distri-
bution of S. noctilio infestations to a set of explanatory variables (for example, environ-
mental data) are non-existent. Therefore, it would be beneficial from a pest management
perspective, to model pine forests that are highly susceptible to S. noctilio infestations at
a more regional scale in an effort to understand localized variations of environmental
conditions in relation to the distribution of the wasp.

Machine learning techniques such as classification and regression trees or C&RT
(Breiman et al. 1984) have been frequently used to model the damage associated with
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forest pests and pathogens (Candau and Fleming 2005, Kelly and Meentemeyer 2002,
Kelly et al. 2007, Rosso and Hansen 2003). C&RT are non-parametric models that
construct a set of decision rules by recursively splitting the response variable (for
example, species data) into smaller homogenous groups, where each split is based on a
single explanatory variable. The final output is a tree diagram with the terminal nodes
of the tree indicating the final response (De’ath and Fabricius 2000, Prasad et al. 2006,
Vayssieres et al. 2000). C&RT are popular amongst researchers because the model
has the following benefits: no advanced variable selection is required; explanatory
variables do not need to have a Gaussian distribution; due to the graphical nature of
the tree; the results are easy to interpret; the model can use a combination of categorical
and continuous explanatory variables; the model has the ability to capture hierarchical
and non-linear relationships and finally; the model provides insight into the spatial
influence of the explanatory variables (De’ath and Fabricius 2000, Kelly and Meente-
meyer 2002, Kelly et al. 2007, Prasad et al. 2006, Vayssieres et al. 2000). However,
C&RT are very sensitive to small changes in the training dataset and have been iden-
tified as unstable classifiers that are prone to overfitting (Breiman 1996). Researchers
have suggested that by bootstrapping (Efron and Tibshirani 1993) the original training
dataset and then averaging the class predictions, C&RT can be stabilized (Archer and
Kimes 2008).

The Breiman-Cutler, random forest (RF) model is an improvement of C&RT that
includes bootstrap aggregation (bagging) and randomly selects a subset of explanatory
variables to create an ensemble classifier that avoids overfitting and is successful in
combining unstable learners like C&RT (Breiman 2001). The RF model has been notably
exploited for the analysis of microarray data (Archer and Kimes 2008, Diaz-Uriarte and
Alvarez de Andres 2006, Jiang et al. 2004, Strobl et al. 2007). However, in recent years,
researchers have successfully applied the RF model to a variety of spatial datasets. Within
a spatial framework, RF has been used to map invasive plants (Lawrence et al. 2006),
land cover (Gislason et al. 2006, Pal 2005), tick-borne disease (Furlanello et al. 2003),
climate change (Leng et al. 2007, Prasad et al. 2006) and habitat suitability (Garzon
et al. 2006).

Results from the above studies indicated that the RF model is competitive with
commonly used modeling approaches and provides an effective method for estimating
the importance of explanatory variables. More specifically, Garzon et al. (2006) com-
pared the predictive ability of RF, neural networks and C&RT to map the distribution of
Pinus sylvestris. Results from the study, concluded that RF was the most accurate
classifier followed by neural networks and then by C&RT. Prasad et al. (2006) modeled
the distribution of loblolly pine, sugar maple, American beech and white oak under
current and future climate scenarios using regression trees, RF, bagging trees and mul-
tivariate adaptive regression splines. Results from the study indicated that random forest
was superior in reproducing the current and future distribution of the four tree species.
Using the RF internal measure of variable importance, Furlanello et al. (2003) deter-
mined that climatic variables are vital for predicting the occurrence of ticks. The experi-
mental results were considered novel for the study area, since previous published models
indicated that the geological substratum was important for identifying tick habitats
(Furlanello et al. 2003).

In this study, we expanded the application of RF to susceptibility mapping. We
implemented the RF model within a spatial framework to determine which pine forests
in an unaffected area (i.e. Mpumalanga), are susceptible to S. noctilio infestations. We
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assumed that if pine forests in Mpumalanga share similar environmental conditions with
those areas with confirmed S. noctilio infestations in KwaZulu-Natal, they are more
likely to be susceptible to infestation. More specifically, we examined the robustness of
RF, firstly in terms of its classification accuracy and secondly for the empirical selection
of explanatory variables. This study ultimately focused on developing a Geographic
Information Systems (GIS) susceptibility model that could eventually be applied to all
pine forests located in South Africa and for the first time introduced RF for mapping pine
forests that are susceptible to S. noctilio infestations. Although RF is capable of carrying
out regression as well as classification (Liaw and Wiener 2002), this study focused on
classification, since the response variable in this study was binary and denoted the
absence or presence of S. noctilio infestations.

2 Methods and Materials

2.1 Response and Explanatory Variables

We assessed the robustness and accuracy of the RF model by applying the algorithm
to 1301, Sappi and Mondi, Pinus patula compartments located in the southern region
of KwaZulu-Natal (Figure 1). These compartments were field checked and visually
inspected for the presence or absence of S. noctilio infestations by experienced forestry
personnel over a period of three years (i.e. from 2004 to 2006). Additionally, in com-
partments that were classified as infested, a subset of infested trees was destructively
sampled by foresters to verify the presence or absence of S. noctilio larvae. Of the 1301
response variables, 458 (35.20%) had S. noctilio infestations and 843 (64.80%) had
no S. noctilio infestations. The response variables were further divided into a training
dataset for model development and a test dataset for independent accuracy assessments
(Table 1). Additionally, class frequencies (absence and presence) were approximately
balanced in both the test and training datasets.

The explanatory variables used in this study consisted of one minute by one minute,
historical climatic as well as topographic layers projected to Transverse Mercator (Harte-
beesthoek; central meridian 31). The climatic variables used for developing the model
were obtained from the South African agrohydrology atlas (Schulze et al. 1997) and
included: mean annual precipitation, mean annual temperature, monthly median rainfall,
monthly minimum temperature, monthly maximum temperature, monthly solar radia-
tion, monthly evapotranspiration and monthly potential evaporation. These historical
climatic datasets (1990–1997) were derived from 1,000 meteorological stations located
across South Africa (van Staden et al. 2004) and a detailed methodological description of
the datasets is provided by Schulze et al. (1997).

The topographic variables used in the study consisted of a digital elevation model
(DEM), slope and aspect. The DEM (90 m spatial resolution) was derived from shuttle
radar topographic mission (STRM) data and was obtained from the global land cover
facility (GLCF) at the University of Maryland (http://glcf.umiacs.umd.edu/index.shtml).
Slope (percentage) and aspect (degrees) were then calculated from the DEM using Spatial
Analyst (ESRI 2006). Data from climatic and topographic datasets (n = 77) were then
extracted for the test and training datasets using the zonal statistics functionality in
ArcGIS 9.1 (ESRI 2006). The complete list of explanatory variables used in this study is
shown in Table 2.
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Figure 1 Maps (inserts (a) and (b)) showing the study area in relation to the spatial
distribution of commercial forestry plantations in South Africa. Insert (c) provides a
detailed view of the samples that were collected at the Sappi Pinewoods plantation

Pine Forests Susceptible to Sirex Noctilio Infestations 713

© 2010 Blackwell Publishing Ltd
Transactions in GIS, 2010, 14(5)



2.2 Model Description

2.2.1 Random forest

The RF methodology was developed by Breiman (2001) and uses a classification tree as
the base classifier. Firstly, RF generates an ensemble of classification trees with each tree
in the ensemble grown to maximum size without any pruning. The classification trees in
the ensemble then vote by plurality on the correct classification. Secondly, RF searches
only across randomly selected subsets of explanatory variables to determine the split at
each node. By limiting the number of variables used for each split, the computational
complexity of the RF algorithm is reduced and the correlation between trees in the
ensemble decreases. Each tree in the ensemble is then constructed using bootstrapped
sampling with replacement and contains randomly drawn samples from approximately
two-thirds of the samples from the original training dataset. The excluded one-third of
the random samples that are left out from each bootstrapped sample is known as the out
of bag (OOB) samples. Finally, the OOB samples are then used to determine misclassi-
fication error and variable importance. The misclassification error (or OOB error) is
calculated by putting each OOB sample down the corresponding classification tree
from which it was excluded. The error estimate is then calculated as the misclassi-
fied proportion of that OOB sample (Breiman 2001, Garzon et al. 2006, Gislason et al.
2006, Liaw and Wiener 2002, Pal 2005, Peters et al. 2007, Prasad et al. 2006). The

Table 1 Training and test datasets used in the study

Training dataset Test dataset

Presence (Y) 321 (35.24%) 137 (35.13%)
Absence (N) 590 (64.76%) 253 (64.87%)
Total 911 (70.02%) 390 (29.98%)

Table 2 Climatic and topographic datasets used in the study

Variable Abbreviation Description Coverage

Solar radiation SR Monthly solar radiation January to December
Precipitation MAP Mean annual precipitation

MR Median rainfall January to December
Temperature MAXT Daily maximum temperature January to December

MINT Daily minimum temperature January to December
MAT Mean annual temperature

Evaporation APAN Potential evaporation January to December
PEMO Potential evapotranspiration January to December

Digital elevation
model

DEM Elevation
SLOPE Slope
ASPECT Aspect
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calculation of the variable importance using the OOB sample is described in section
2.2.2.

There are only two tuning parameters required for RF, the number of trees in the
ensemble (ntree), and the number of possible splitting variables (mtry) which are sampled
at each node (Peters et al. 2007). Researchers have shown that sensitivity of the ntree
and mtry parameters are minimal and that the default values are often a good choice
(Lawrence et al. 2006, Liaw and Wiener 2002). However, in this study we optimised both
parameters using the OOB error. A more detailed statistical description of the algorithm
is provided by Breiman (2001). We used the randomForest library (Liaw and Wiener
2002) for the R statistical software (R Development Core Team 2008) to implement the
algorithm.

2.2.2 Using random forest for variable selection

The importance of variable selection is not only to reduce the amount of explanatory
variables used in the analysis, but also to improve our understanding of which explana-
tory variables are most suitable for modeling the distribution of pine forest that are
susceptible to S. noctilio infestations. RF calculates the importance of each explanatory
variable by random permutation of all values of the explanatory variables in the OOB
sample. The number of votes for the correct class in the permutated data is subtracted
from the number of correct votes in the original data which is then averaged over all trees
in the forest. This represents the importance value for each explanatory variable and
is the percentage increase in the misclassification rate as compared to the OOB rate of
the non-permutated data (Prinzie and Van den Poel 2008). As opposed to other methods
of calculating variable importance (for example, the Gini index), the permutation
method is regarded as the most reliable measure for determining variable importance
(Breiman 2001).

However, it is often difficult to set a cut off value when there are many explanatory
variables and when most of them have very similar importance measures (Jiang et al.
2004). Also, in order to simplify the modeling process we would like to identify the
smallest number of explanatory variables that offer the best discriminatory power and
help in the empirical interpretation of the final S. noctilio susceptibility model. To address
these issues we examined two variable selection methods which iteratively measure the
importance of each explanatory variable (as determined by RF) and then remove the least
relevant explanatory variables. The backward variable selection method builds multiple
RF’s and after building each RF iteratively discards those explanatory variables with the
smallest variable importance as determined by the OOB error rate (Diaz-Uriarte and
Alvarez de Andres 2006). The recursive variable selection method is very similar to the
backwards approach except that variable importance is recalculated for each RF that is
built, thus producing a new ranking of variables before the variables with the smallest
importance are discarded (Jiang et al. 2004, Svetnik et al. 2003). We used the varSelRF
library (Diaz-Uriarte and Alvarez de Andres 2006) for the R statistical software to
implement the recursive and the backward variable selection methods.

2.2.3 Accuracy assessments

It has been suggested that when using RF there may be no need for cross validation or
a separate test dataset to determine the misclassification error because the OOB error
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provides an unbiased estimate of error (Lawrence et al. 2006, Prasad et al. 2006, Prinzie
and Van den Poel 2008). However, according to Diaz-Uriarte and Alvarez de Andres
(2006) and Granitto et al. (2006) using the OOB error to determine the misclassification
error could result in a biased estimation of the error because the samples used to calculate
the error are not independent of the model being evaluated. In this study, the OOB error
was used to fine tune the user-defined mtry parameter and for the empirical selection of
explanatory variables and not to calculate the final misclassification error (Diaz-Uriarte
and Alvarez de Andres 2006).

To avoid bias in the accuracy assessments we use an independent test dataset
(n = 390) to calculate the final misclassification error (Reunanen 2003) and the results
were tabulated using a confusion matrix. Several measures can be calculated from the
confusion matrix (Fielding and Bell 1997), however, we calculated the precision and
recall measures because our main interest was in correctly modeling “presence” rather
than “absence” (Peters et al. 2007). From the confusion matrix, precision ( p) is calcu-
lated as the proportion of predicted presences that are observed to be present rather than
absent and is defined as: p = TP/TP + FP. Recall (r) is calculated as the proportion of
observed presences that were predicted correctly and is defined as: r = TP/TP + FN (Peters
et al. 2007). The weighted F measure (van Rijisbergen 1979) that combines precision and
recall is stated as:

F p r pr p rβ β β,( ) = +( ) +2 21 (1)

where b is the weighting factor that controls the relative importance of precision versus
recall. If b = 1, precision and recall have equal importance if b = 0.5, precision is twice
as important as recall and if b = 2 then recall is twice as important as precision. According
to Peters et al. (2007) the magnitude of F varies from no predictive power (0) to perfect
prediction (1). Furthermore, we carried out a discrete multivariate technique called
Kappa analysis to determine if the overall classification as determined by RF was better
than if it was classified by a random classifier. The result of performing a Kappa analysis
is the k (KHAT) statistic which measures agreement or accuracy (Cohen 1960). KHAT
values range from -1 to +1 and if the values are one or close to one then there is perfect
agreement between test and training datasets (Congalton and Green 1999, Lillesand
et al. 2004, Skidmore 1999).

3 Results

3.1 Fine Tuning Random Forest

Before using RF to model the potential distribution of pine forests that are susceptible to
S. noctilio infestations, we examined the effect of the number of randomly selected
variables (mtry) on the classification error. According to Peters et al. (2007) reducing
the mtry value decreases the strength of individual trees (resulting in an increase in
classification error) and the correlation between any two trees in the forest (resulting
in a decrease in classification error). Therefore, the user defined mtry value has to be
optimized in order to achieve a minimal classification error. Four different sized RF
models (ntree) were constructed for all possible unique values (n = 77) of mtry. We then
used the lowest OOB error to determine the optimal mtry value (Diaz-Uriarte and
Alvarez de Andres 2006, Granitto et al. 2006, Peters et al. 2007, Svetnik et al. 2003).
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Table 3 shows that the lowest OOB error (8.89%) is obtained when 200 trees are
built using an mtry value of three. Furthermore, using an mtry value of three for the
other models (100, 500 and 1,000) produces a negligible increase in OOB error (<1%).
Similarly, when classifying microarray data Diaz-Uriarte and Alvarez de Andres (2006)
show that the OOB error rate is largely independent of ntree sizes even for ntree values
ranging from 1,000 to 40,000 trees. Based on the results obtained we opted to use
the following parameters: mtry = 3 with ntree = 200 because of the low OOB error
produced.

3.2 Variable Selection Using Backward and Recursive Approaches

As mentioned earlier, the RF model estimates the importance of an explanatory variable
by looking at how much the OOB error increases when the OOB data for that particular
explanatory variable is permutated while the other variables are not permutated.
Figure 2 shows the mean decrease in accuracy of explanatory variables (n = 35) as
determined by the OOB error. For visualization purposes, only variables that have a
greater than 30% decrease in accuracy are shown.

Results show that the highest ranked variables in terms of their importance include:
evapotranspiration (April and August) followed by the median rainfall during the
summer months (February, April, January, November and December). Additional high
ranked variables include: solar radiation, evaporation and slope. Temperature (minimum
and maximum), aspect and the digital elevation model are low ranked and have very
low importance scores (not shown in Figure 2). To determine the minimum number
of explanatory variables required to accurately model the potential distribution of
S. noctilio infestations, we implemented the backward and recursive variable selection
methods. For both variable selection methods, 20% of the least important explanatory
variables (as determined by the RF model) were discarded from the previous RF iteration.
This allowed for faster computations and is based on an aggressive variable selection
approach (Diaz-Uriarte and Alvarez de Andres 2006). Figure 3 shows the results for both
variable selection methods.

Results show that by using 14 variables the minimum OOB error obtained for the
recursive variable selection method was 8.34% and by using 21 variables the minimum
OOB error was 8.23% for the backward variable selection method. However, the best
solution is based on selecting the least amount of variables with the proviso that the final
solution has an OOB error rate that is within one standard error of the minimum error
rate of all forest created (Diaz-Uriarte and Alvarez de Andres 2006). Under these
conditions the recursive method then selects the best solution based on seven variables

Table 3 Maximum and minimum OOB errors obtained
using four different ntree values and all possible mtry values

ntree value 100 200 500 1000

Minimum OOB error 9.22% 8.89% 9.00% 9.22%
Optimal mtry value 2 3 6 11
OOB error (mtry = 3) 9.55% 8.89% 9.33% 9.44%
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Figure 2 Variable importance as determined by random forest (mtry = 3 and ntree = 200).
The full names for the variables are shown in Table 2 and the numbers refer to the month
of the year

Figure 3 The OOB error obtained during the backward and recursive variable selection
process. The arrows indicate the number of explanatory variable that produce an OOB
error within one standard deviation of the lowest OOB error

718 R Ismail, O Mutanga and L Kumar

© 2010 Blackwell Publishing Ltd
Transactions in GIS, 2010, 14(5)



with an OOB error of 9.11%, while the backward method selects nine variables with an
OOB error of 8.45%. The variables selected by the recursive method were as follows:
median rainfall for January (MR1), median rainfall for February (MR2), median rainfall
for April (MR4), median rainfall for November (MR11), evapotranspiration for April
(PEMO4), evapotranspiration for August (PEMO8) and potential evaporation for
August (APAN08). The variables selected by the backward method included: the mean
annual precipitation (MAP), median rainfall for January (MR1), median rainfall for
February (MR2), median rainfall for April (MR4), median rainfall for December
(MR12), evapotranspiration for April (PEMO4), evapotranspiration for August
(PEMO8), evapotranspiration for October (PEMO10) and potential evaporation for
August (APAN08). The backward variable selection method provides the better solution
with a lower OOB error than the recursive approach.

3.3 Stability of the Backward Variable Selection Method

According to Granitto et al. (2006) the selection of explanatory variables is an unstable
process and could lead to the selection of very different subsets of explanatory variables
for each replicate of the study. To examine the stability of the RF model with the
backward variable selection method, we determined the number of times an explanatory
variable (MAP, MR1, MR2, MR4, MR12, PEMO4, PEMO8, PEMO10 and APAN08) is
selected when the backward variable selection method is bootstrapped (n = 100) (Efron
and Thibshirani 1997). Results indicate that all the variables selected using the backward
method have a very high selection probability (90% and greater). According to Figure 4
the explanatory variables with the highest probability of selection are: MAP (99%), MR4
(97%), PEMO08 (97%), APAN08 (96%) followed by PEMO04 (96%). The variables
selected using the backward method (n = 9) were then used as the input explanatory
variables for the final RF model.

3.4 Classification Accuracy

To evaluate the accuracy and robustness of RF for mapping the potential spatial dis-
tribution of S. noctilio infestations, we compared the RF accuracy assessments against
the widely used C&RT. Table 4 shows the accuracy assessments for both machine
learning models. The KHAT value obtained by the RF model (0.84) is much higher than
the KHAT value obtained by the C&RT (0.74), indicating that there is a strong agree-
ment between the observations (n = 911) and the RF model predictions (n = 390).
For both models, precision and recall are high, implying that there was more correctly
predicted presence rather than absence of S. noctilio infestations. However, the weighted
F measures ranges from 0.78 to 0.87 for C&RT while the weighted F measures for the
RF model were all above 0.87. Overall, the RF model produces better results than C&RT
as determined by the weighted F measures as well as by the kappa analysis.

3.5 Modeling Sirex Noctilio Susceptibility

Finally, we extrapolated the RF model developed for KwaZulu-Natal to all pine forest
plantations located in Mpumalanga (Figure 5a). Each pixel (one minute by one minute)
that contained pine forests was classified 200 times and the proportion of votes over
all 200 trees indicated the susceptibility to S. noctilio infestations. Figure 5b shows
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the potential distribution of pine forest plantations that are susceptible to S. noctilio
infestations in Mpumalanga as determined by RF model. Of the 1,909 pixels that
were classified, 1,204 pixels have a high susceptibility (>70%) to S. noctilio infestation
with the remaining pixels (n = 705) having a moderate (50%–70%) to low (<50%)

Figure 4 The number of times each explanatory variable is selected during the boot-
strap process (n = 100). The full names for the variables are shown in Table 2 and the
numbers refer to the month of the year

Table 4 Accuracy assessments using the test dataset
(n = 390)

Classification and
regression
trees (C&RT)

Random
forest (RF)

Precision 0.90 0.91
Recall 0.76 0.88
F2 0.78 0.89
F1 0.82 0.90
F0.5 0.87 0.90
KHAT 0.74 0.84
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Figure 5 Insert (a) shows the current distribution of pine forest located in Mpumalanga.
Insert (b) shows the potential distribution of pine forests that are susceptible to Sirex
noctilio infestations in Mpumalanga. Inserts (c) and (d) provide a detailed view of pine
forests that are susceptible to Sirex noctilio infestations

Pine Forests Susceptible to Sirex Noctilio Infestations 721

© 2010 Blackwell Publishing Ltd
Transactions in GIS, 2010, 14(5)



susceptibility to S. noctilio infestation. Overall, the majority (63%) of pine forest plan-
tations located in Mpumalanga have a high susceptibility to S. noctilio infestation with
the exception of pine plantations located in the vicinity of Lothair (Figure 5c), which
have a moderate to low susceptibility to S. noctilio infestation.

4 Discussion

4.1 Classification Accuracy

The results obtained from this study are very encouraging and show that RF is a robust
and accurate machine learning technique that can be implemented within a spatial
framework to determine which pine forests are susceptible to S. noctilio infestations.
Comparisons between RF and C&RT confirm that RF produces better accuracies than
C&RT (Breiman 2001, Garzon et al. 2006, Prasad et al. 2006). More specifically,
results from this study indicate that RF obtains a KHAT value of 0.84 while C&RT
obtained a KHAT value of 0.74. Furthermore, Gislason et al. (2006) and Hamza and
Larocque (2005) showed that RF obtains the best overall classification results even
when compared to other ensemble methods that use tree classifiers as the base model.
Overall, the RF model is relatively easy to implement and only requires the user to
specify the (1) number of trees to be grown (ntree) and (2) number of variables to split
the nodes of individual trees (mtry). While results of this study indicated that these
parameters have to be optimized to produce the best results, researchers have noted
that the default mtry (square root of the total amount of variables) and ntree (500)
values often produce acceptable results (Liaw and Wiener 2002). This is an important
property of RF because the model can be run with minimal human guidance (Gislason
et al. 2006).

4.2 Variable Importance

In addition to providing accurate classification results, the RF model also provided
insight into which variables are most important with respect to the modeling process.
The backward variable selection method enabled us to simplify the RF modeling process
successfully and identify the smallest number of explanatory variables that offer the best
discriminatory power and help in the empirical interpretation of the final model. These
findings were also reported by Diaz-Uriarte and Alvarez de Andres (2006) and Jiang et al.
(2004), when they applied variable selection and RF to microarray datasets. More
specifically, results from this study showed that by implementing the backward variable
selection method, we reduced the total number of explanatory variables (n = 77) to an
optimal number of variables (n = 9) that explained the presence or absence of S. noctilio
infestations.

Variables that were selected by the backward variable selection method in-
cluded: mean annual precipitation (MAP), median rainfall for January (MR1), median
rainfall for February (MR2), median rainfall for April (MR4), median rainfall for
December (MR12), evapotranspiration for April (PEMO4), evapotranspiration for
August (PEMO8), evapotranspiration for October (PEMO10) and potential evaporation
for August (APAN08). Although the backward variable selection method is not expected
to describe the causal relationship between the explanatory variables and presence or
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absence of S. noctilio infestations, results empirically show that pine forests that expe-
rience stress caused by evapotranspiration and evaporation (PEMO4, PEMO8, PEMO10
and APAN08) followed by rainfalls especially during the summer months (MR1, MR2,
MR4, MR12) are more susceptible to S. noctilio infestations. These results are consistent
with the view of Madden (1988) who hypothesized that intermittent stress (for example
drought) contributes significantly to S. noctilio outbreaks by increasing tree attractive-
ness and susceptibility through rapid physiological changes following rains of short
duration. Additionally, it is well documented that trees that are experiencing stress are
more likely to be attacked by S. noctilio. For example, researchers have suggested that
pine forests that experience drought, fire or have a high density of tree plantings are more
likely to be attacked by S. noctilio (Ciesla 2003, Haugen and Underdown 1990, Tribe
and Cillie 2004).

4.3 Modeling Susceptibility

Developing a model that spatially defines the potential distribution of pine forests that
are susceptible to S. noctilio infestations is an important step in understanding the nature
of the epidemic in South Africa. S. noctilio is currently the most important pest of pines
in South Africa (Hurley et al. 2008). Knowledge of the potential distribution of pine
forests that are susceptible to S. noctilio infestations is important because it serves as a
spatial guide and allows forest managers to focus their existing detection and monitoring
efforts on key areas and to proactively adopt the most appropriate course of intervention
before the wasp actually colonizes these unaffected pine forests located in Mpumalanga.
For example, results show that a potential hotspot exists around the town of Piet Retief
(Figure 5d). Pine forests located in the vicinity are highly susceptible to S. noctilio
infestations and are within a close proximity to the current S. noctilio infestation in
KwaZulu-Natal (Vryheid). With an annual flight radius of 48 km (Tribe and Cillie
2004), the wasp will most probably colonize pine forest in the area within the next two
years. It is recommended that pine forests located in the area should be continuously
monitored for the early symptoms of S. noctilio infestation and prioritized for remedia-
tion efforts.

Remediation of established S. noctilio populations is achieved by biological means
using the nematode Beddingia siricidicola and by using various parasitic wasps (Carnegie
2005, Ciesla 2003, Hurley et al. 2007, Tribe and Cillie 2004). However, in unaffected
pine forests in Mpumalanga, silvicultural practices, especially thinnings, have been
recommended to improve tree vigor and to increase resistance to future S. noctilio
infestations (Hurley et al. 2007). It is important, however, that thinnings are not carried
out during the flight season as the practice could increase stress and favor a build up
S. noctilio infestation (Carnegie 2005).

5 Conclusions

The RF model when used in conjunction with GIS provides a useful and robust tool that
can assist with current forest pest management initiatives. The added benefit of using the
RF model is that it only requires the fine tuning of two user-defined parameters in order
to achieve good classification. Overall, there is a high probability of S. noctilio infestation
for the majority (63%) of pine forest plantations located in Mpumalanga. Compared to
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previous studies the RF model identified highly susceptible pine forests at a more regional
scale and provided an understanding of localized variations of environmental conditions
in relation to the distribution of the wasp. Knowledge of the potential distribution of pine
forests that are susceptible to S. noctilio infestations is important because it serves as a
guide and allows forest managers to focus their existing detection and monitoring efforts
to key areas and proactively adopt the most appropriate course of intervention before the
wasp actually colonizes these unaffected pine forests.
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