
ABSTRACT 

Sirex noctilio is causing considerable mortality in commercial pine plantations in KwaZulu-Natal, South Africa. The ability to remotely detect 
variable (for example, low, medium and high) S.noctilio infestation levels remains crucial for monitoring of the actual spread of the disease 
and for the effective deployment of suppression activities. Although high resolution image data can detect and monitor S.noctiZio infestations 
there are no guidelines to the appropriate spatial resolutions that are suitable for detection and monitoring purposes. This study examines the 
use of minimum variance to analyze S.noctilio infestations in an effort to determine an optimal spatial resolution of remotely sensed data for 
forest health monitoring purposes. High resolution (0.5 m) image data was collected using a four band airborne sensor and infestation levels 
were derived using the normalized difference vegetation index (NDVI) and Gaussian maximum likelihood classifier. It was determined that the 
appropriate spatial resolution for the detection and monitoring of Smoctilio infestations as estimated by the minimum variance of sub samples 
narrowly differed based on the level of localized infestations present in the study area. Pixel sizes larger than 2.3 m will not provide adequate 
information for high infestation levels, while using pixel sizes smaller than the 1.75 m for detecting low to medium infestation levels will yield 
inappropriate results. The results of this study establish the necessary spatial resolution guidelines needed for the operational detection and 
monitoring of S.noctilio. 

Introduction 
In its natural habitat, the Eurasian woodwasp, Sirex noctilio 

typically attacks stressed pine trees (Neumann et al., 1981). 
However, as population levels increase, the wasp spreads 
through mature pine compartments and causes extensive 
mortality of larger trees (Haugen 2000, Ciesla 2003). S.noctilio 
infestation levels have reached epidemic proportions in 
KwaZulu-Natal, South Africa, with thirty percent or more of 
Pinus patulu trees being killed in some plantations (Slippers 
2006). In an effort to minimize the economic threat to 
commercial forestry, management strategies that combine the 
use of remote sensing, silvicultural treatments and biological 
control are currently being implemented (Ismail et al., 2005). 
The ability to remotely detect variable (for example, low, 
medium and high) S. noctilio infestation levels remains crucial 
for the monitoring of the actual spread of the disease and for 
the effective deployment of suppression activities (Ismail et 
al., 2006). For example, the ability to remotely detect light to 
medium S.noctilio infestations is beneficial because it allows 
forest managers to adopt a proactive course of remediation 
(for example, nematode inoculations) before the entire 
plantation reaches a point of non-recovery. However, it is 
unrealistic to expect that a single remotely sensed data source 
will be both sufficiently detailed and suitably cost effective to 
capture variable infestation levels at a compartment, or even 
at a broader plantation scale. 

The availability and accessibility of airborne sensors (for 
example, ArcEagle, LReye and Geospace) in South Africa has 
resulted in the increased acquisition of remotely sensed image 
data. However, as an increasing number of remotely sensed 
datasets become commercially available the factor of spatial 
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resolution plays an important role in the employment of 
remotely sensed image data (Quattrochi et al., 1997). Spatial 
resolution is defined as the limit on how small an object on 
the earth’s surface can be ‘seen’ by a sensor (for example, 
2.4 m pixel for QuickBird and 4 m for IKONOS) as being 
separate from its surroundings (Lillesand et al., 2004) and 
the basic information and measurement error contained in a 
remotely sensed image is strongly dependant on that spatial 
resolution (Woodcock et al., 1987, Atkinson, 1993). For 
current S.noctilio detection and monitoring purposes, forestry 
companies tend to use the finest resolution (0.5 m) available. 
However, using remotely sensed data with spatial resolutions 
finer than the structure of the vegetation community may 
introduce irrelevant variation and result in large data volumes 
and unnecessary cost (Menges et al., 2001). Methods need to 
be developed where each object under investigation can be 
considered at its ‘optimal’ spatial resolution (Marceau et al., 
1994), where the information content per pixel is maximized 
(Atkinson, 1997). Additionally, for remote sensing of forest 
ecosystems to become operational, spatial resolutions of 
remotely sensed image data must be appropriate for the 
specific application (Treitz et al., 2000) and the data should 
be used with caution because of the potential problems that 
may arise from mismatches in scale between sensor and the 
practical requirements of the mapping exercise (Menges et 
al., 2001). The question then arises: on what basis should the 
investigator select an appropriate spatial resolution for the 
detection and monitoring of S. noctilio infestations? 

Previous research (Woodcock et al., 1987; Atkinson, 
1993, 1997, Atkinson et al. 2004) has shown that the spatial 
variation between objects in a scene can be used to select 
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an ‘optimal’ spatial resolution and method of analysis for a 
given investigation. In forest environments, this relationship 
between the spatial variation in the objects of interest and 
spatial resolution has been described using average local 
variance (Woodcock et al., 1987), semivariance (Treitz et al., 
2000, Colombo et al., 2004), minimal variance (Marceau et 
al., 1994, Menges et al., 2001) and spatial autocorrelation 
(Hyppanen, 1996). According to Marceau et al. (1994) the 
merit of using a minimal variance approach is that it considers 
different forest classes (for example, infestation levels) 
as opposed to an entire forest scene, thus making it a more 
suited indicator of the ‘optimal’ spatial resolution for each 
particular class under investigation. Minimal variance is based 
on the assumption that when a pixel representing an object 
of interest is considerably larger (L-resolution) or smaller (H- 
resolution) than the object, the probability of selecting pixels 
across the image with different digital number (DN) values is 
high and this leads to a high variance (Marceau et al., 1994). 
However, when the pixel of the image data delineates the 
appropriate mixture of ground features composing the object 
under investigation, the variance is then at the lowest level 
(information content is maximized) and can be used as an 
indicator of the ‘optimal’ spatial resolution required for the 
investigation (Marceau et al., 1994). 

As part of a larger research effort aimed at reducing the 
effects of S.noctilio on pine production patterns in KwaZulu- 
Natal, Ismail et al. (2006) showed that high resolution image 
data can be used to detect and monitor S.noctilio infestations. 
However, there was no guideline to the appropriate spatial 
resolutions that are suitable for detection and monitoring 
purposes. This study aims to extend the work of Ismail et 
al. (2006) by using the minimal variance of classified NDVI 
images to define appropriate pixel sizes to capture the spatial 
variability of S.noctilio infestations. By establishing the 
spatial limitations of image data under variable infestation 
levels, we hope to contribute useful information and provide 
the necessary guidelines for the operational detection and 
monitoring of S.noctilio at compartment or plantation scales. 

Methods and materials 
Study area 

The study area is part of the Mondi Thornham plantation 
(Figure 1) and is situated in the Midlands area of KwaZulu- 
Natal. The area lies at an altitude of 1,500 m above sea 
level with frost occurring in most areas between May and 
September (Schulze et al. 1997). Rainfall varies between 800 
mm and 1200 mm per year, with high rainfall experienced 
predominately during the mid-summer months (Schulze et al., 
1997). Lithology is predominantly shale, and to a lesser extent 
dolerite. Soils are characterized by fine sandy clay, humic 
topsoil, underlain by yellow or red apedal subsoil. Dominant 
soil forms are Inanda and Magwa. Clay contents vary between 
25 % and 35 % in topsoil horizons and attain values of up to 
45 % in subsoil horizons (Schulze et al., 1997). 

Figure 1: Location of the study area. Image data shown is a false 
colour composite consisting of the NIR, red and green bands. 
Compartments selected for the study are indicated in yellow. 

Sirex noctilio infestations 
As part of the detection and monitoring framework used 

by the forestry industry, current S.noctilio infestations are 
determined by identifying the red stage of attack (Ismail et 
al., 2006). The red stage of attack occurs approximately three 
months after adult flight and oviposition, when the foliage of 
infested trees wilts and changes color from green to yellow 
to reddish brown (Haugen et al., 1990, Stone et al., 2004). 
Infestation levels are then categorized into the following 
damage classes: low (1-5%), medium (6-lo%), high (11- 
15%) and severe (>16%) (Croft 2006). Similarly, in this study, 
infestation levels were calculated as the percentage of red 
stage trees to the total number of trees. 

Table 1: compartments selected for this study (n = 6) .  
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Selection of Sirex noctilio infested compartments 
In order to prevent statistical bias, pine compartments 

(n= 6) with the same age and species were selected from the 
study area (Table l), thus reducing the effects of structural 
parameters on the spatial resolution analysis (Hyppanen 1996). 
For our purposes, additional localized sub samples (50 m x 50 
m grids) were then generated over the selected Pinus patula 
compartments to provide a more representative sample ( n= 
308) that could be used for further analysis. Previous field 
visits to the plantation have shown that localized samples 
consisting of 50 m x 50 m grids are adequate to capture 
S.noctilio infestations. Additionally, studies examining the 
effects of spatial resolutions on vegetation mapping have also 
adopted a localized sub sample approach in an effort to provide 
a more representative sample size (Muwira, 2003; Colombo et 
al., 2004). 

Description of image data 
High resolution (0.5 m) image data was acquired on the 

1 January 2006 by Land Resources International (LRI) Inc, 
Pietermaritzburg (South Africa) with their manufactured LrEye 
aerial imaging system. The LrEye sensor is composed of a series 
of four monochrome Sony cameras. Each camera collects data 
for one of the bands shown in Table 2. The resulting four bands 
are registered to form an image with four co-registered bands 
that are then referenced to the Transverse Mercator projection 
(Hartebeesthoek, central meridian: 29). 

Table 2: Spectral and spatial range of the LrEye sensor 

Image processing and analysis 
A number of vegetation indices (VI) have been succesfifully 

used to assess the changes in reflectance due to the declining 
health status of the trees (Vogelmann, 1990; Collins et al., 
1996; Coops et al,. 2004; Leckie et al., 2004). Additionally, 
the advantage of using VI includes the removal of variability 
caused by canopy geometry, soil background, sunview angles 
and atmospheric conditions (Gilabert et al., 2002). In this study, 
the normalized difference vegetation index (NDVI) was used to 
determine S.noctilio infestation levels present within the study 
area. Investigators have shown that NDVI calculated from high 
spatial resolution (0.5 m) image data can successfully (87% 
classification accuracies) detect S.noctiZio infestations (Ismail 
et al., 2006). In this study NDVI was derived from the high 

resolution image data (0.5 m) using equation ( I )  and rescaled 
to the range of 0 to 255 in order to facilitate data handling in 
the image processing software. 

’1 - ‘2 

‘1 - ‘ 2  (Rouseetal, 1973; Jackson, 1983) (1) 

Where: A, , near infrared band (850 nm to 900 nm) 

h, , red band (650 nm to 680 nm) 

To obtain the training signatures, six localized sub samples 
were randomly selected from the pine compartments shown 
in Table 1. Tree crowns located within each sub sample were 
manually identified on the 0.5 m image data and subsequently 
located in the field using a global positioning system (GPS). In 
total, 11 1 trees were visually assessed for S.noctilio red stage 
of attack. To prevent errors of commission, trees identified as 
red stage trees (those having a reddish brown canopy) were 
destructively sampled to check for the presence of S.noctilio 
larvae. Results indicated that all trees identified as red stage 
trees were positive for S.noctilio infestations. 

Using the training signature obtained from the study area, 
the NDVI image was then classified into binary classes of 
red stage pixels and healthy pixels by means of a Gaussian 
maximum likelihood (GML) classifier (Erdas, 2004). GML 
classifier was used because it is relatively convenient to 
implement and more robust than other classification rules 
since it utilizes variances and covariances of training statistics 
as opposed to simpler statistics (Chen et al., 2004). Next, using 
the binary image, infestation levels (%) for the study area were 
calculated as the ratio of red stage pixels compared to the total 
number of pixels for each sub sample (n = 308) generated over 
the study area. These sub samples provided us with variable 
infestation levels (“A) for which we would then examine the 
effects of spatial resolution. 

Minimum variance 
The method for calculating the minimum variance for each 

localized sub sample is relatively straightforward and is easily 
implemented in any image processing software. Firstly, to 
simulate variable spatial resolutions, the binary image data 
(0.5 m) as determined by the GML was successively resampled 
to coarser resolutions. The process involves calculating 
the average pixel value using odd sized n x n windows of 
increasing dimensions (Table 3). According to (Marceau et al., 
1994) this averaging method is regarded as an efficient and 
simple way to represent the physical aggregation process of a 
sensor’s instantaneous field of view (IFOV). Additionally, the 
nearest neighbour and cubic convolution algorithms used for 
resampling data, induce sharpening or smoothing effects that 
influences the analytical process (Bian et al., 1999) 
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Table 3: Window sizes used during the resampling process. 

Next, the variance (equation 2) at each sub sample (n = 308) 
was calculated for all resampled spatial resolutions (binary 
images consisting of red stage pixels and healthy pixels). A 
similar process was adopted by (Colombo et al. 2004) who 
used the semivariance of binary images (forest and non 
forest pixels) to determine an appropriate spatial resolution fo- 
monitoring tropical forest cover. 

8 Variance = 1 (xij - M 1 2  

Mean = 1 xi. 

n 

Where: xg = DN value of pixel (i, j )  

n 
= Number of pixels in a window 

M = Mean of the moving window 

Finally, the spatial resolution at which each sub sample 
reaches a minimum variance was observed and tabulated. 
This spatial resolution was then averaged for each unique 
infestation level present in the study area and the resulting 
spatial resolution was defined as the ‘optimal’ spatial resolution. 
However, according to (Atkinson, 1997), where the objective 
is to map the spatial variation of interest, the spatial resolution 
chosen should not be the spatial resolution defined in this 
study as ‘optimal’. It was suggested that the spatial resolution 
used should be much finer than the calculated ‘optimal’ 
spatial resolution because the objective for mapping is not to 
maximize the amount of information per pixel but to ensure 
that there is sufficient information of interest to be sampled. 
According to sampling theorems, to effectively sample objects, 
one must sample at least at one-half the width of the object 
under investigation (McGrew et al., 2000).Therefore, for our 

purpose, a pixel smaller than or equal to half the ‘optimal’ 
spatial resolution would be an appropriate resolution for the 
detection and monitoring of S.noctilio infestations. 

Results 
Classijication results 

Figure 2 (a) shows the derived NDVI image for the study 
area. The original NDVI values (-1 to 1) were rescaled to 
the range of 0 to 255 (Erdas, 2004). The lower limits of the 
range indicate the absence of vegetation while the upper limits 
indicate very healthy vegetation. The derived NDVI values 
for the study area had a lower limit of 0 and an upper limit 
of 231. Box plots in figure 2 (b) show the spread of NDVI 
values for the healthy (n = 37) and red stage trees (n = 74). 
The mean differences between the two groups were tested 
using a t test and the normality of the data was assessed using a 
Kolomogrov-Sminov test (p > 0.05). The results from the test 
indicated that NDVI values significantly differ between the red 
stage and health trees (p > 0.05). Consequently, the training 
samples (n = 11 1) were then used to classify the NDVI image 
into binary classes of healthy and red stage pixels. 

Figure 2:  NDVI values derived from high spatial resolution (0.5 m) 
image data. (a) Shows the spatial pattern of NDVI values in the study 
area. (b) Shows the spread of NDVI values for healthy (mean = 160; 
standard deviation = 7.1) and red attack trees (mean = 113; standard 
deviation = 9.3). 
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Infestation levels, calculated as the ratio of red attack 
pixels compared to the total amount of pixels revealed that 
there is 19.5 % infestation at a plantation scale. Infestation 
levels calculated at a compartment level (n = 6) are shown 
in Table 4. For comparative purposes, independent forest 
health enumerations (field based) are provided for the selected 
compartments (Croft, 2006). A Mann-Whitney U Test revealed 
that there was no significant difference (p < 0.05) between the 
field based and the binary infestation levels. However, in order 
to determine an appropriate pixel size to capture the spatial 
variability of S. noctilio infestations, the localized sub samples 
(50 m x 50 m grids) provided a more representative sample of 
infestation levels (n = 308) as opposed to infestations levels at 
a compartment level (n = 6). 

Table 4: Comparison ofS.noctilio infestation levels at a compartment 
scale. 

Based on the existing damage classes used by foresters, 

infestation levels were categorized into low (1-5%), medium 

(6-lo%), high (11-15%) and severe (>16%) classes (Croft, 
2006). Figure 3 shows the variability of infestation levels 

throughout the study area as calculated for the sub samples. 

There is a predominately medium to high infestation levels 

with 15.43% of the grid cells have a low infestation levels 

while 51.77% have a medium infestation level and 32.80% 

have a high infestation level. As expected there are no sub 

samples with severe infestations levels (> 16%). Localized 
areas having severe infestation levels are easily identifiable by 

foresters and measures such as clear felling operations would 

have been implemented in order to salvage “utilizable” red 

stage trees and to prevent S.noctilio from spreading to other 

compartments in the plantation. 

Figure 3: Histogram showing the infestation levels within the study 
area (50m x 50m grid) 
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Minimal variance 
Figure 4 shows the process of resampling the original 0.5 

m binary image (i.e. healthy and red stage pixels) by using 
odd sized windows (3 x 3 , 5  x 5 , 7  x 7 and so on). One of the 
effects of the resampling process is that the number of pixels 
decreases as the resolution becomes coarser (Woodcock et 
al., 1987). Especially noticeable is that, grids cells with lower 
infestation levels ( 1  -5%) result in a greater loss of pixels during 
the resampling process. Therefore, there are a limited number 
of times that the image data can be resampled and still have a 
reasonable number of pixels to estimate variance. 

Figure 4: An example of the resampled binary images that were used 
to determine the minimal variance. The spatial pattern Xnoctilio 
infestations for compartment B19 are shown at 1.5 m (a), 2.5 m (b), 
3.5 m (c), 4.5 m (d), 6.5 m (e) and 7.5 m (0 spatial resolutions. 
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i 
5 x 5 window 

I I  

I 7x7window 

9 x 9 window 

13 x 13 window V-t- 3 

11 x 11 window <+I i 
Figure 5 shows the variance plotted as a function of the 

resampled spatial resolutions. Two dominant trends are 
observed from the data, firstly, for low to medium infestation 
levels (1-10%) the variance is relatively high at 1.5 m, 
decreases to reach a minimum at an intermediate resolution 
and reaches a value of zero in the coarser resolutions (Figure 
5a). As mentioned earlier, the zero variance values obtained 
at coarser resolutions are due to the resampling process. 
Secondly, for the high infestation levels (1 1 - 15%) the variance 
is relatively high at 1.5 m, decreases towards the intermediate 
resolution and stabilizes in the coarser resolutions (Figure 5b). 
In both cases, the minimum variance is observed when the 
variance of the pixels for each sub sample is at the lowest 
level. This drop in variance (minimal variance) is then used as 
a measure of the ‘optimal’ resolution that takes into account 
the inherent spatial properties of varying infestation levels. 
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Figure 5: Graphs indicating trends of the calculated minimal variance. The spatial resolution at which each sub sample reaches a minimum 
variance is shown with an arrow. Figure 5a shows trends prevalent in low to medium infestation levels (1-10%) while Figure 5b shows the 
trend in variance for high infestation levels. 
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The 'optimal' spatial resolutions as determined by minimum 
variance was then averaged for each unique infestation level (n 
= 14) and the resulting spatial resolutions are shown in Table 5. 
Since our aim was to define an appropriate pixel size to capture 
the spatial variability of S. noctilio infestation and following 
the sampling theorem (McGrew et al., 2000), results show 
that the appropriate resolutions for low to medium infestation 
levels range between 1.75 m and 1.93 m, while the appropriate 
resolution for higher infestation levels (1 1 - 15%) are between 
1.99 m and 2.31 m. Furthermore, correlation analysis was 

undertaken to examine the relationship between the appropriate 
spatial resolutions and S.noctilio infestation levels. The 
coefficient of determination (r2 = 0.87, p <0.001) indicated 
that there is a strong correlation between the appropriate spatial 
resolutions and S.noctilio infestation levels. Results indicate 
that areas with high infestations levels can be detected using 
coarser resolution remotely sensed data and areas with low 
infestation levels can be detected using finer remotely sensed 
data. 

Table 5: Infestation levels and spatial resolution 
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Discussion 
For remote sensing technologies to be widely accepted by 

forest managers and for these tools to be used on an operational 
basis, methods must allow for the efficient and cost effective 
mapping of S.noctilio infestations. In this context, minimal 
variance calculated for localized sub samples has proven to be 
a useful tool in determining an appropriate spatial resolution 
for the detection and monitoring of S.noctilio infestation levels. 
Although the range of appropriate spatial resolutions is narrow 
(<0.5), there would be a significant reduction in the cost of 
acquiring image data, since costs are primarily dependant 
on pixel size. The results obtained are consistent with the 
hypothesis, that each object mapped using remotely sensed 
data has a scale or a narrow range of scales associated with it, 
which provides its best representation (Marceau et al., 1994). 

The results from this study provide the following guidelines: 
(i), for areas that have known S.noctilio infestations (medium 
to high infestation levels) pixels sizes between 1.75 m to 
2.3 m would be sufficiently detailed to capture infestation 
rates, while (ii) newly colonized areas or areas susceptible 
to infestation (low infestation levels), a pixel size of 1.75 m 
would be appropriate. Using pixel sizes larger than 2.3 m may 
not provide adequate information for high infestation levels 
(1 1-15%), while using pixel sizes smaller than the 1.75 m for 
detecting low to medium infestation levels (1-10%) could 
mean an unnecessarily large volume and cost of data. 

However, determining the appropriate resolution for an 
investigation is a function of the type of environment, the 
kind of information desired and the techniques used to extract 
the information (Chen et al. 2004, Garrigues et al. 2006). For 
example, optimal resolution studies have shown that using 
different vegetation indices produce different results (Menges 
et al., 2001, Rahman et al., 2003). According to Menges et 
al. (2001), these differences are related to the suppression or 
enhancement of certain features on the image. Furthermore, 
the inclusion or exclusion of certain wavelengths might 
have implications for users wishing to select an appropriate 
resolution (Atkinson et al., 2004). 

To summarize, defining appropriate pixel for an application 
is complex task and depends mainly on the objectives of 
the study and the techniques used to retrieve the required 
information, firstly the pixel size should be large enough to be 
consistent with the object (tree crowns) targeted and fine enough 
to capture the spatial variability of the data and minimize intra- 
pixel variability. The appropriate pixel sizes proposed in this 
study provide an indication of the upper (2.3 m) and lower 
(1.75 m) limit of the appropriate pixel sizes that are suitable for 
detection and monitoring of S.noctilio infestations. 

Summary and conclusions 
In this study, the effects of spatial resolution on detecting 

Sirex noctilio infestation levels were examined at a sub sample 
level using classified NDVI images. This procedure allowed 
us to establish the appropriate spatial resolution guidelines 
necessary for the operational monitoring and detection of 
S.noctilio. The appropriate pixel size should be chosen between 
the upper and lower limits proposed in this study but additional 
factors such as economic and technical constraints should be 

considered. Some of the major findings from the study are as 
follows: 

Minimum variance calculated for localized sub samples is 
a useful tool for identifying the appropriate spatial resolution 
needed for a particular investigation. When using a spectral 
classifier (for example, NDVI) to detect infestation levels, pixel 
sizes larger than 2.3 m will not provide adequate information 
for high infestation levels (1 1 - 15%), while using pixel sizes 
smaller than the 1.75 m for detecting low to medium infestation 
levels (1 -1 0%) could mean an unnecessarily large volume 
and cost of data. Although the identified range of appropriate 
spatial resolutions is narrow (< 0.5 m), using the appropriate 
spatial resolutions as determined by this study would result in 
the reduced costs of future image data acquisitions. 
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