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The remote detection and quantification of symptoms associated with declining forest health is critical for the introduction of 
proper pest monitoring and control measures. Sirex noctilio, the Eurasian wood wasp, is one of the major pests responsible 
for declining forest health in pine forests located in KwaZulu-Natal, South Africa. Researchers have shown that stress induced 
by S. noctilio causes a rapid decrease in foliar water content, with the foliage of the tree changing from a dark green to a 
reddish brown hue. This study examined if the variation in foliar water content due to S. noctilio infestation can be remotely 
detected. Foliar water content and in situ hyperspectral measurements were obtained from Pinus patula trees experiencing 
varying levels of stress induced by S. noctilio. Subsequently, foliar water content was correlated to selected spectral variables 
consisting of known water absorption features, spectral indices and continuum-removed absorption features. Results showed 
that the variations in foliar water content across the varying levels of S. noctilio infestation were strongly linked to the variation 
in hyperspectral reflectance. Except for water absorption features located at 970 nm and 1200 nm, there was a strong 
correlation between the majority of the spectral variables and foliar water content. Of the spectral variables tested, the water 
index (WI) provided the strongest linear correlation (r = 0.84) with foliar water content. Ultimately, results obtained from this 
study provide the foundation for the detection and monitoring of S. noctilio infestations at a landscape level using airborne or 
spaceborne hyperspectral platforms.

Keywords: absorption features, continuum-removed absorption features, foliar water content, hyperspectral, Sirex noctilio, 
spectral indices

Introduction

The remote detection, identification and quantification of 
symptoms associated with declining forest health is crucial  
for forest managers and scientists who are interested in 
monitoring and managing forest health at local and global 
scales. The Eurasian wood wasp, Sirex noctilio, is the 
primary pest responsible for the systematic decline of forest 
health in commercial pine forests located in South Africa 
(Hurley et al. 2007, Ismail et al. 2007, Slippers 2006). In the 
province of KwaZulu-Natal, the wasp predominately attacks 
mature Pinus patula trees (Hurley et al. 2007). Unabated, 
the wasp population may develop into epidemic proportions, 
resulting in widespread P. patula mortality at a landscape 
level (Slippers 2006).

The physiological effects of Pinus trees experiencing 
S. noctilio induced stress has been a subject of investiga-
tion for several years (Coutts 1965, 1968, 1970, Slippers 
et al. 2003). Research has shown that after an initial flight 
period, the female wasp inserts her ovipositor through the 
bark into the sapwood and lays up to three eggs at each 
drill site (Madden 1974, Spradberry 1977). During the 
process, the wasp also introduces a toxic mucus secretion 
and the arthrospores of the symbiotic fungus Amylostereum 
areolatum into the tree (Slippers et al. 2003). The mucus 
secreted by the wasp changes the water balance of the tree 
thereby creating conditions that are ideal for the growth and

spread of the fungus (Slippers et al. 2003). More specifi-
cally, Coutts (1970) observed that trees injected only with 
the mucus secretions do not die. The mucus changes the 
physiological conditions of the tree, resulting in an accumu-
lation of phosphate and an increase in the dry weight of the 
foliage. However, trees that were injected with the mucus 
and the fungus showed a rapid decrease in foliar moisture 
content within 2–3 weeks, resulting in the tree dying with the 
foliage changing from a dark green to a reddish brown hue. 

In an effort to develop a pest monitoring framework, the 
visual symptoms associated with S. noctilio infestations 
were divided into a damage scale by Ismail et al. (2007). 
The damage scale progresses from healthy (no indication of 
attack) to green (appearance of resin droplets and presence 
of ovipositors), and finally to red (wilting of the attacked tree 
and leaves appearing reddish brown). Based on the physio-
logical observations of Coutts (1970) and the damage scale 
of Ismail et al. (2007), we hypothesise that the foliage of 
the infested trees will have variations in foliar water content 
depending on the scale of damage. If that holds, then the 
remote detection and mapping of the foliar water content 
of P. patula infested by S. noctilio would help in accurately 
quantifying the severity of damage caused by the wasp. 

Developments in hyperspectral remote sensing have 
shown that spectral reflectance curves vary with the amount 
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of foliar water content present in plants (Gausman et 
al. 1971, Inoue et al. 1993, Pu et al. 2003, Stimson et al. 
2005). Subsequently, several spectral indices and specific 
water absorption features have been used to estimate foliar 
water content. For example, research carried out by Cohen 
(1991a, 1991b) showed that ratios of the red to near infrared 
(NIR), and the NIR to the shortwave infrared (SWIR), 
were correlated with the water status of Pinus coulteri and 
P. contorta needles. Stimson et al. (2005) used spectral 
indices such as the normalised difference vegetation index 
(NDVI), the normalised difference water index (NDWI), the 
red edge, and continuum-removed absorption features 
(located at 970 nm and 1 200 nm) to detect foliar drought 
stress present in Pinus edulis and Juniperus monosperma. 
Their results showed that a strong link exists between plant 
physiological characteristics related to water stress and 
spectral reflectance. Regarding other forest genera, Pu et 
al. (2003) investigated water stress in Quercus agrifolia as a 
result of sudden oak disease and found that a linear relation-
ship exists between the foliar water content and spectral 
variables derived from the water absorption bands located 
at 975 nm, 1 200 nm, and 1 750 nm. More recently, Eitel et 
al. (2006) examined the ability of several spectral indices 
to remotely detect water stress in Populus species. Results 
from the study indicated that statistically significant but poor 
relationships were obtained at a leaf level using spectral 
indices such as NDVI, water index (WI) and the red edge.

However, in spite of the wide use of water absorption 
bands, spectral indices and continuum-removed features, 
researchers have not established whether there are any 
variations in the quantity of foliar water and spectral reflect-
ance for the healthy, green and red stages of S. noctilio 
infestation. In an effort to improve current detection and 
monitoring methods, this study aimed to search for spectral 
variables that will hopefully detect the variation in foliar 
water content of P. patula trees that are experiencing 
varying levels of stress induced by S. noctilio. 

Materials and methods

Field data collection
Pinus patula foliage was collected from a S. noctilio infested 
compartment located at the Sappi Pinewoods plantation 
(centroid 29°38′36.06′′ S, 30°4′13.83′′ E) in KwaZulu-Natal, 
South Africa (Ismail et al. 2008). To facilitate a represent-
ative sample, P. patula trees were carefully examined 
with the assistance of experienced foresters and classi-
fied into mutually exclusive classes (i.e. healthy, green and 
red). Using tree climbers, samples representing each class 
(healthy = 24, green = 30 and red = 12) were randomly 
obtained from the upper, middle and lower crowns of 
selected trees (Ismail et al. 2008). After clipping, each sample 
(approximately 1 kg) was immediately placed on the ground 
and spectral measurements were collected. The measure-
ments were taken on a clear sunny day between 10:00 and 
14:00, using an Analytical Spectral Devices Field Spec Pro 
FR spectroradiometer. The spectroradiometer senses in the 
350–2 500 nm spectral range. The first sensor measures 
reflection in wavelengths between 350 nm and 1 050 nm 
with a spectral resolution of 1.4 nm, while the second sensor 

measures reflection between 1 000 nm and 2 500 nm with 
a spectral resolution of 2 nm (Analytical Spectral Devices 
2002). In accordance with established protocols, the spectro-
radiometer was mounted on a tripod with a 25° field of view 
and positioned 0.5 m above each sample at nadir position. 
Additionally, radiance measurements were converted to 
target reflectance using a calibrated white spectralon panel 
of known spectral characteristics (Analytical Spectral Devices 
2002). To control for variation in leaf orientation, 10 spectral 
reflectance measurements were averaged for each sample 
and individual samples were rotated 30° between scans 
(Pontius et al. 2005).

Water content analysis
Following the spectral measurements, foliar samples from 
each class (i.e. healthy, green and red) were immedi-
ately sealed in a plastic bag and sent to the Institute of 
Commercial Forestry Research laboratory, Pietermaritzburg, 
South Africa, for water content analysis. Foliar samples were 
weighed fresh (fresh weight; FW) and then dried in an oven 
for approximately 24 h at 60 °C. The leaf samples were 
then weighed again after drying (dry weight; DW). Foliar 
water content (WC) was calculated as the ratio between the 
quantity of water (FW − DW) and the FW (Ceccato et al. 
2001, Bowyer and Danson 2004):

        WC (%) = ((FW − DW) / FW) × 100  (1)

Spectral variables 
In addition to using known water absorption features located 
near or at 970 nm, 1 200 nm and 1 400 nm (Curran 1989, 
Pu et al. 2003), several spectral variables that included 
spectral indices and continuum-removed features were also 
computed from the hyperspectral dataset. 

Spectral indices were selected due to their previous 
success in detecting water stress (Pu et al. 2003, Stimson et 
al. 2005, Eitel et al. 2006) and calculated as a ratio between 
wavelengths located from the water absorption region of the 
electromagnetic spectrum and a control wavelength located 
outside the water absorption region (Sims and Gamon 2003). 
More specifically, the spectral indices considered in this study 
included the water index (Penuelas et al. 1997), the normal-
ised difference water index (Hardinsky et al. 1983), the 
normalised difference vegetation index (Rouse et al. 1973) 
and three-band ratio indices (Gao et al. 1993, Pu et al. 2003).

The water index (WI) is based on the ratio between the 
reflectance (R) located at 900 nm and at 970 nm (Penuelas 
et al. 1997), and is calculated as:

       WI = R900 / R970  (2)

The normalised difference water index (NDWI) ratios the 
reflectance at 860 nm and 1 240 nm (Hardinsky et al. 1983), 
and is calculated as: 

      NDWI = (R860 − R1240) / (R860 + R1240) (3)
 

The normalised difference vegetation index (NDVI) is 
calculated using reflectance values located at 860 nm and 
690 nm (Rouse et al. 1973) as follows: 
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        NDVI = (R860 − R690) / (R860 + R690) (4)

The three-band ratio indices (Gao et al. 1993, Pu et al. 2003) 
for the absorption wavelengths centered at 975 nm and 
1 200 nm were calculated as follows:

    Ratio975 = 2R960–990 / (R920–940 + R1090–1110)  (5)

 Ratio1200 = 2R1180–1220 / (R1090–1110 + R1265–1285)  (6)

Continuum removal was applied to the water absorp-
tion features in an effort to reduce background effects 
and normalise the spectral reflectance of these features 
(Kokaly and Clark 1999). The continuum is calculated 
by fitting a convex hull over the top of the spectrum, 
utilising straight line segments that connect local spectra 
maxima (Clark and Roush 1984, Kokaly and Clark 1999). 
The continuum is then removed by dividing the reflect-
ance value for each point in the absorption features by 
the reflectance level of the continuum line (convex hull) 
at the corresponding wavelength (Mutanga et al. 2003, 
Huanga et al. 2004). Removing the continuum thus 
standardises isolated absorption features for compar-
ison purposes (Clark 1999). Figure 1a shows the spectral 
reflectance fitted with a convex hull and Figure 1b shows 
the continuum-removed reflectance that was derived
from Figure 1a. 

Continuum removal was applied to water absorption 
features located at R920–1120 and R1070–1320 (Pu et al. 2003). 
Although several variables can be calculated from these 
continuum-removed absorption features (Clark and Roush 
1984, Kokaly and Clark 1999, Mutanga et al. 2003, Pu et 
al. 2003), we only calculated band depth (BD), which is 
computationally efficient and therefore more suitable for the 
practical application of this study (Mutanga and Skidmore 
2004). Band depth at 975 nm (BD975) and band depth 
at 1 200 nm (BD1200) were calculated by subtracting the 
continuum-removed reflectance R′ at wavelength i from 1:

           BD(λi) = 1 − R′(λi) (7)

where i represents the 970 nm and 1 200 nm wavelengths. 

Results

Variation in water content
The average water content was 58.93% for the healthy class, 
45.60% for the green class and 14.67% for the red class. 
The range of foliar water content varied from a maximum of 
63.55% for the healthy class to a minimum of only 9.83% for 
the red class (Table 1). 

We used a one-way analysis of variance (ANOVA) to test 
whether the differences in foliar water content between the 
different classes were significant. We tested the research 
hypothesis that the mean foliar water content (%) measured 
from the healthy, green and red classes were different, viz. 
the null hypothesis H0: μ1 = μ2 = μ3 versus the alternate 
hypothesis Ha: μ1 ≠ μ2 ≠ μ3, where μ1, μ2 and μ3 are the 
mean foliar water content for the healthy, green and red 
classes. Results from the ANOVA showed that the mean 

foliar water content for the three classes differed significantly 
(F value = 170.83, p < 0.001). 

Subsequently, we ran a post hoc Tukey HSD test in 
order to establish whether there were any significant differ-
ences in foliar water content between each class pair (i.e. 
healthy-red, healthy-green and green-red). The test was 
done to complement the results obtained from the ANOVA, 
which showed that there was a significant difference in the 
mean foliar water content for all three classes, but did not 
show which pairs were different. Results from the post hoc 
Tukey HSD test indicated that the mean foliar water content 
differed significantly between the healthy-red, healthy-green 
and green-red class pairs (p < 0.001).

Variation in wavelength reflectance
Figure 2 shows that there is a clear visual difference 
in reflectance between the three classes of S. noctilio 
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Figure 1: (a) The laboratory spectral reflectance of healthy P. patula 
needles fitted with a convex hull and (b) the continuum-removed 
reflectance that was derived from (a)

Summary statistics Red Green Healthy
Minimum 9.83 25.70 51.54
Maximum 22.96 62.73 63.55
Average 14.67 45.60 58.93
Standard deviation 5.55 12.33 11.84

Table 1: Variation in foliar water content (%) for the red (n = 12), 
green (n = 24), and healthy (n = 30) classes 
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infestation. In the visible part of the electromagnetic spectrum 
(350–700 nm) the red and green classes had a high reflect-
ance in the red region (600–700 nm) when compared to the 
healthy class. In contrast, there was a decrease in reflect-
ance in the NIR region (700–1 300 nm) for the green and 
red classes. In the SWIR (1 300–2 500 nm), the red class 
has highest reflectance followed by the green class. A more 
detailed description and explanation of the variation in 
spectral reflectance of individual bands due to S. noctilio 
infestation is provided by Ismail et al. (2008). In this study 
we will specifically focus on the water absorption features 
centred near 970 nm, 1 200 nm and 1 450 nm (Figure 2), 
because these bands are known to be affected by variation 
in foliar water content (Curran 1989, Pu et al. 2003).

Figure 3 shows the distribution and mean reflect-
ance values for the red, green and healthy classes for the 
water absorption bands located at 970 nm, 1 200 nm and 
1 450 nm. For the water absorption bands located in the 
NIR (970 nm and 1 200 nm) the mean reflectance for the 
healthy class was higher than the other classes. Conversely, 
for the water absorption band located at 1 450 nm, the mean 
reflectance values for the healthy class was much lower 
than the other classes of infestation. Results obtained from 
the ANOVA with a post hoc Tukey HSD test confirmed that 
the mean reflectance for the water absorption bands used 
in this study were significantly different (p < 0.001) between 
all three classes for the water absorption bands located at 
970 nm, 1 200 nm, and 1 450 nm. Based on these results 
we expected the spectral variables (i.e. spectral indices and 
continuum-removed absorption features) at these water 
absorption bands to detect the variation of water content as 
a result of S. noctilio infestation. 

Relationship between water content and spectral 
variables 
We ran a correlation analysis between foliar water content 
and the spectral variables (i.e. water absorption bands, 
spectral indices and continuum-removed features). Table 2 
shows the results of the correlation analysis. Except for the 
wavelengths located at 970 nm (r = 0.26) and 1 200 nm 
(r = 0.19), there was a strong significant correlation between 
the spectral variables used in this study and water content 
(p < 0.001). 

While the correlations between the reflectance values 
of bands located at 970 nm and 1200 nm and foliar 
water content were weak, the three-band ratio indices 
and continuum-removed features that use these bands 
yielded a high correlation. For example, BD975 and BD1200 
have positive correlation values of 0.71 and 0.79, whereas 
Ratio975 and Ratio1200 have negative correlation values of 
0.81 and 0.76. Overall, the water index (WI) yielded the 
strongest linear correlation (r = 0.84, p < 0.001) with foliar 
water content. Figure 4 shows the distribution of WI values 
for the red, green and healthy classes while Figure 5 shows 
the linear relationship between WI and foliar water content. 
Noticeable in Figure 4 is the high WI values for the healthy 
class when compared to the low WI values of the red class. 

In order to examine the robustness and sensitivity of the 
spectral variables used in this study, the red-stage samples 
(n = 12) were removed from the correlation analysis. 
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Figure 2: Spectral reflectance variation for the healthy, green and 
red stages of Sirex noctilio infestation. Reflectance values between 
1800 nm and 1950 nm, and between 2470 nm and 2500 nm, 
displayed a high level of noise and were therefore removed from 
further analysis

Figure 3: Box plots showing the distribution and mean reflectance 
values for the red, green and healthy classes for the water 
absorption bands located at 970 nm, 1200 nm and 1450 nm 
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Additionally, we suspected that samples from the red class 
were amplifying the correlation coefficients of the spectral 
variables due to their low water content values (minimum 
of 9.83% and a maximum of 22.96%). Table 3 shows the 
results of the correlation analysis when the red class was 
excluded from the study. Overall, there was a decrease 
in the correlation coefficients for all the spectral variables 

considered in the study when the red class was excluded 
from the analysis. The Ratio975 spectral index yielded the 
highest decrease in correlation (19%) followed by reflectance 
at 1 450 nm (17%), WI (17%), and BD1200 (17%). However, 
in comparison to the other spectral variables examined in 
this study, WI, again, yielded the strongest linear correlation 
(r = 0.67, p < 0.001) with foliar water content. 

Discussion

Quantifying the effects of S. noctilio infestation on the 
foliar water status of P. patula trees will improve our ability 
to remotely detect and map the damage caused by the 
wasp. In this regard, techniques based on hyperspectral 
remote sensing provide an ideal platform for quantifying 
the variation in foliar water status associated with S. noctilio 
infestation. Experimental results from this study show that 
there is a significant variation in foliar water content across 
all three stages of S. noctilio infestation, increasing from a 
mean of 9.83% for red-stage trees to 63.55% for the healthy 
trees. Additionally, results indicate that there are statisti-
cally significant differences in foliar water content amongst 
the three classes of S. noctilio infestation considered in 
this study. Thus, the results tie up with the physiological 
explanation that the mucus and the fungus injected by the 
wasp cause a rapid decrease in the moisture content of the 
tree (Coutts 1970) .

With regard to the variation in foliar water content and 
spectral reflectance, wavelengths located at 970 nm and 
1 200 nm (NIR) yielded poor correlations with foliar water 
content compared to the wavelength located at 1 450 nm 
(SWIR). These results are consistent with previous studies 
which have indicated that wavelengths located in the 
SWIR are more sensitive to changes in plant water status 
than wavelengths located in the NIR (Tucker 1980, Carter 
1991, Eitel et al. 2006). However, it is interesting that the 
continuum-removed features (BD975 and BD1200) and the 
spectral indices (Ratio975 and Ratio1200) calculated from these 
poorly correlated wavelengths located at 970 nm (r = 0.26) 
and 1 200 nm (r = 0.19) yielded strong positive correlation 
with foliar water content (r > 0.7, p < 0.001). These results 
support the notion that (1) continuum removal normal-
ises and enhances absorption features thereby yielding 
a strong relationship with the variable under investigation 
(Kokaly and Clark 1999, Mutanga et al. 2003, Stimson et 

Spectral feature Wavelength/
index

Correlation 
coefficient

1 Water absorption wavelength 970 nm 0.26
2 Water absorption wavelength 1200 nm 0.19
3 Water absorption wavelength 1450 nm −0.75**
4 Spectral index NDVI 0.77**
5 Spectral index WI 0.84**
6 Spectral index NDWI 0.73**
7 Spectral index Ratio975 −0.81**
8 Spectral index Ratio1200 −0.76**
9 Continuum removed BD975 0.71**
10 Continuum removed BD1200 0.79**
** Significant (p < 0.001)

Table 2: Relationship between foliar water content (n = 66) and 
spectral variables 
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Figure 4: Box plot showing the distribution and mean reflectance of 
the water index (WI) values for the red, green and healthy classes
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Figure 5: Linear regression model of water content (%) and the 
water index (WI)

Wavelength/index Correlation coefficient
1450 nm −0.58
NDVI 0.65
WI 0.67
NDWI 0.57
Ratio975 −0.62
Ratio1200 −0.63
BD975 0.63
BD1200 0.62

Table 3: Relationship between the foliar water content (%) and 
the spectral variables used in the study. The red class (n =12) was 
excluded from the correlation analysis
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al. 2005) and (2) spectral indices will perform better than 
their individual wavelengths due to their ability to minimise 
the spectral variability caused by the morphology and 
biochemical properties of the foliage (Curran 1989), thereby 
optimising the sensitivity of the spectral reflectance of plants 
to changes in foliar water content (Eitel et al. 2006).

Overall, the results of this study confirm previous research 
that showed that variations in foliar water content due to 
stress may be estimated using spectral variables (Pu et 
al. 2003, Stimson et al. 2005, Eitel et al. 2006). The water 
index (WI), which is based on a ratio of two bands (900 nm 
and 970 nm) in the NIR, produces the best results (r = 0.84) 
for detecting the variation in foliar water content. Similar 
results were obtained by Dawson et al. (1999) and Bowyer 
and Danson (2004) who showed that WI obtained strong 
correlations with foliar water content. However, upon further 
investigation, results elucidated that the correlations of foliar 
water content to WI were amplified by the red class, which 
had significantly lower foliar water content values (greater 
dry weight) than the other classes. According to Bowyer and 
Danson (2004), stronger correlations between foliar water 
content (as determined by equation 1) and WI are obtained 
when there are low water content values (i.e. including the 
red class) and weaker correlations are obtained when there 
are higher water content values (i.e. excluding the red class) 
because WI is primarily affected by variations in leaf weight 
(i.e. dry weight) rather than by changes in foliar water 
content. However, compared to other spectral variables  
examined in this study WI still produced better correlations 
and shows promise in discriminating the green class or the 
early stages of S. noctilio infestations, a task that was not 
possible using multispectral sensors (Ismail et al. 2006). 

In summary, the results from this study show that a number 
of spectral variables derived from hyperspectral reflectance 
can be used to assay the water content of P. patula needles 
experiencing stress induced by S. noctilio. Furthermore, the 
results from this study provide the impetus for the remote 
detection and mapping of S. noctilio at a landscape level. 
Although the relationship obtained at a needle level is 
insufficient to allow detection and mapping at a landscape 
level, it establishes a foundation for the potential upscaling 
of results to either an airborne or spaceborne platform (Eitel 
et al. 2006). For verification purposes a detailed study that 
examines the detection of stress induced by S. noctilio at a 
canopy level is needed.  Upscaling the results of this study 
to a canopy level is pertinent since it is envisaged that the 
South African space agency will soon launch the ZASat-003 
satellite (Scholes and Annamalai 2006, Mutanga et al. 
2009). ZASat-003 will carry a full multisensor microsatellite 
imager (MSMI) instrument as well as a hyperspectral sensor 
that will slice the spectrum between 400 nm and 2 350 nm 
into 200 bands (Mutanga et al. 2009) thus providing the 
necessary spectral resolution needed to detect and map 
S. noctilio infestations at a landscape level.

Conclusion

This study has shown that the variation in foliar water 
content across the three levels of S. noctilio infestation in 
pine plantation forests is strongly linked to a variation in 

spectral reflectance. Additionally, the results demonstrate a 
critical link between the physiological effects of S. noctilio 
infestation and spectral variables derived from hyperspec-
tral data, thus providing the foundation for the detection and 
monitoring of S. noctilio infestations at a landscape level 
using airborne or spaceborne hyperspectral platforms.
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