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Robustness of Risk Maps and Survey Networks
to Knowledge Gaps About a New Invasive Pest

Denys Yemshanov,1,∗ Frank H. Koch,2 Yakov Ben-Haim,3 and William D. Smith4

In pest risk assessment it is frequently necessary to make management decisions regarding
emerging threats under severe uncertainty. Although risk maps provide useful decision sup-
port for invasive alien species, they rarely address knowledge gaps associated with the under-
lying risk model or how they may change the risk estimates. Failure to recognize uncertainty
leads to risk-ignorant decisions and miscalculation of expected impacts as well as the costs
required to minimize these impacts. Here we use the information gap concept to evaluate
the robustness of risk maps to uncertainties in key assumptions about an invading organism.
We generate risk maps with a spatial model of invasion that simulates potential entries of
an invasive pest via international marine shipments, their spread through a landscape, and
establishment on a susceptible host. In particular, we focus on the question of how much
uncertainty in risk model assumptions can be tolerated before the risk map loses its value.
We outline this approach with an example of a forest pest recently detected in North Amer-
ica, Sirex noctilio Fabricius. The results provide a spatial representation of the robustness of
predictions of S. noctilio invasion risk to uncertainty and show major geographic hotspots
where the consideration of uncertainty in model parameters may change management deci-
sions about a new invasive pest. We then illustrate how the dependency between the extent
of uncertainties and the degree of robustness of a risk map can be used to select a surveillance
network design that is most robust to knowledge gaps about the pest.
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1. INTRODUCTION

Invasive alien species cannot be managed at
meaningful spatial or temporal scales without pre-
diction of the risks and impacts associated with
invasion. Assessing invasion risk typically involves
ranking the level of threat posed by an invading
organism to various geographic locations, which is
accomplished by identifying the pathways and pro-
cesses of its introduction and movement, its suscepti-
ble hosts or habitats, and its potential ecological and
economic impacts.(1−3) Risk maps, as the spatially ex-
plicit realizations of these assessments, are one of the
elements that may guide policymakers in their deci-
sion process regarding where to target management
actions for a pest.(2,4) These maps are usually based
on underlying conceptual or quantitative models that
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depict important ecological and environmental as-
pects of invasions, such as climatic suitability,(5,6) en-
try,(7) spread and establishment.(8−11) These mod-
els are commonly formulated from established
analytical concepts of invasion spread,(12−16) but re-
quire certain parameters to be derived from prior
knowledge about the invading organism; current or
historical observations are usually applied to make
informed estimates of the true parameter values.
Finding the true values would require extensive ob-
servational data, which can in some cases be obtained
through long-term monitoring programs,(17−19) but
are rarely available for new invaders. Information re-
garding new invaders may be available from other
geographic regions where the species is known to oc-
cur, but even if well specified, does not address the
additional issue that an invader may behave differ-
ently in a new environment.(20−22) Thus, risk maps
may be built upon imprecise data or ill-defined model
assumptions, leading to undetected errors about a
new pest(23,24) and misconceptions about the risks of
invasion.(25,26)

Several techniques have been proposed to quan-
tify uncertainties, with sensitivity analysis among the
most widely used.(24) Sensitivity analysis involves sys-
tematic alterations of model parameter (or input)
values in order to observe their relative contribu-
tion to variation and uncertainty in the target out-
put variable.(27−29) Sensitivity analysis in its tradi-
tional form may be inefficient in cases where large
possible variations of the model parameters that
lead to a worst-case outcome are unknown. A num-
ber of other methods use probability distributions
to represent uncertainty; however, with respect to
estimating risks for emerging invasive pest threats,
probability models may be inadequately formulated
because of the very high importance of rare events
(i.e., events associated with the extreme tails of the
distribution), which most probability models do not
describe well.(30)

Ensemble prediction systems(31,32) that combine
the forecasts made with different models represent
another alternative, in this case addressing, at least
in part, uncertainty due to model structure or formu-
lation.(33,34) Several other studies have attempted to
solve the issue of severe lack of knowledge through
multi-criteria decision analysis and valuation.(35−37)

The general idea of these efforts is to translate vague
objectives into more precise performance indicators.
These techniques, nevertheless, still require knowl-
edge of the structure of uncertainty, which for new
invasive pests is typically lacking.

1.1. Information Gap Analysis

Alternatively, the information gap concept (info-
gap hereafter) formulates the problem of uncer-
tainty in terms of a gap between what is known and
what has to be known in order to make reliable as-
sessments.(30) Briefly, it evaluates the choices for a
particular decision and focuses on the following ques-
tion: How wrong can the data and underlying mod-
els be, while the outcome of the decision in question
remains acceptable? Info-gap requires very limited
prior knowledge about the structure of uncertainty
in the system being modeled; it assumes an unknown
and unbounded horizon of uncertainty.(30,38) The ap-
proach introduces the concept of robustness of a
given decision alternative to uncertainty. Compared
to other decision methods that maximize the poten-
tial utility of the outcome by exhaustively exploiting
the best-estimated data and models, the info-gap ap-
proach focuses on the robustness of an acceptable
outcome to errors in those data and models.

Typically, the info-gap framework includes three
components: a “process” model, a performance re-
quirement, and a model for uncertainty. The pro-
cess model is a formalized representation of the
system of interest that incorporates the elements con-
sidered most important and truthfully rendered.(30,38)

It is used to evaluate the potential decision alterna-
tives (which could mean different actions or policy
objectives). The evaluation of each decision choice,
ψ (a “scenario” hereafter), is usually associated with
a vector of i process model assumptions, x1, x2, . . . , xi.
The values of xi can be, for example, model param-
eter values or functional relations that portray key
assumptions about the system; in the case of species
invasions, parameters such as host susceptibility or
rate of spread are likely to be relevant. Under one
info-gap approach, the xi values are used to calcu-
late corresponding utility functions, vi , which are ag-
gregated via relative scaling factors (or probabilities
that may be uncertain), β i, to an expected utility met-
ric, Vψ(x). The Vψ(x) can be calculated in a vari-
ety of ways, ranging from a simple additive sum of
β i · vi to more complex computations (see Ben-
Haim(30) for further discussion). The expected utility
metric value for each decision scenario ψ is evalu-
ated in terms of the performance requirement. The
performance criteria usually assess the utility metric
value computed with the process model against a cer-
tain threshold:

Vψ(x) ≥ Vmin, (1)
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hence requiring the expected utility to be equal to or
above the critical value, Vmin. The uncertainty model
describes what is unknown about the parameters or
functions xi in the process model. It is often possi-
ble to assume some prior information exists regard-
ing the parameters or functional relations, which may
be represented by their nominal values, x̄i . However,
it is impossible to exactly specify how much the actual
values deviate from these nominal values. The un-
certainty model typically assumes that, for each sce-
nario, any xi deviates by an unknown fraction from
its nominal value, x̄i and an uncertainty parameter, a,
also referred to as the horizon of uncertainty, denotes
this unknown degree of deviation. For each parame-
ter xi, the horizon of uncertainty can also be rescaled
by factor wi based on prior information about the rel-
ative variability of xi (alternatively, wi = 1 if no prior
information is available).

There are many types of info-gap models of un-
certainty. The simplest is the uniform-bound model,
H(a), which contains an unbounded family of nested
intervals for each a ≥ 0:

H(a) = {x : max[0, (1 − wi a)x̄i ] ≤ xi ≤ (1 + wi a)x̄i ,

i = 1, . . . , k}, a ≥ 0, (2)

where each parameter xi deviates from its nominal
value by a proportion wi a or less, satisfying the con-
dition xi ≥ 0. The info-gap uncertainty model is used
in part to estimate the robustness of a given scenario
as the greatest value of the uncertainty horizon, a,
that guarantees an expected utility, Vψ(x), to be no
less than the critical threshold Vmin, that is, Vψ(x) ≥
Vmin. This can be formulated by defining a set of fi-
nite acceptable uncertainty horizons, a, at which a
given scenario still generates a valid outcome.

2. METHODS

2.1. Risk Mapping Application

In this article, we explore a methodology for
estimating how wrong key assumptions about an
invading organism can be without compromising
estimates of invasion risk and their mapped represen-
tations, and without compromising survey decisions.
We consider large possible variations in model pa-
rameters and do not assume knowledge of the con-
ditions comprising the worst-case outcome. We be-
gin by using a spatial simulation model to generate
a map of infestation risks and then use the info-gap
concept to assess how the properties of the risk map

may affect decisions about monitoring of a new pest.
Our first objective is to explore the robustness of
the risk map to uncertainty. We identify geographi-
cal hotspots within the study area where the uncer-
tainties are likely to affect the invasion risk estimates
and their variation. This is an important considera-
tion because risk maps may serve as a starting point
in planning monitoring or quarantine efforts for in-
vasive organisms.(4,39−41) Subsequently, we apply the
results to compare and choose the best (i.e., the most
robust) of several alternative pest surveillance net-
works designed to facilitate long-term monitoring
efforts.

2.2. Species of Interest

Our study focuses on Sirex noctilio Fabricius,
a woodwasp recently detected in the northeastern
United States(42) and eastern Canada.(43) During the
past few years, S. noctilio has expanded beyond the
initial detections, and since most subboreal areas in
eastern North America are believed to be climati-
cally suitable for the species,(44) it is considered a
serious threat to pine (Pinus spp.) forests through-
out the region.(45−47) The few available field data in-
dicate that S. noctilio preferentially attacks nonna-
tive pine species in the eastern United States and
Canada, but native pines are also susceptible.(43,48)

There is little certainty regarding the woodwasp’s be-
havior in North America, as the bulk of quantitative
knowledge about its ecology is based on studies in
the Southern Hemisphere(44,47−49) where S. noctilio
is a pest attacking plantations of introduced pines.

2.3. Risk Mapping Model

For this study, we created maps of S. noc-
tilio invasion risk using a dynamic simulation model
described in Yemshanov et al.(10,11) Our approach
differs from traditional, static risk assessments
performed with bioclimatic niche or similar mod-
els(5,6,39,44) in that we depict the progress of inva-
sion over a given forecast horizon (i.e., we do not as-
sume the invasion has already reached equilibrium).
Briefly, we used the Canadian Forest Service For-
est Bioeconomic Model, CFS-FBM,(10,11) to generate
spatial predictions of S. noctilio spread and impact
on pine host resources across eastern North Amer-
ica. At each time step, S. noctilio disperses from
currently infested locations (i.e., map cells) or from
potential new entries at U.S. and Canadian marine
port locations as a result of international trade. The
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probability that S. noctilio will successfully establish
in a new location depends on the geographical dis-
tribution, composition, and age of the host resource
(i.e., pine stands). If successfully established, the new
S. noctilio population is expected to cause mortal-
ity of hosts over time and also serve as a nucleus
for further expansion of the invasion. Here, we con-
cisely summarize the model characteristics germane
to this study; please see Yemshanov et al.(10,11) and
Koch et al.(50) for more details regarding the CFS-
FBM model and the risk mapping approach.

The simulations started from a 2006 map of
known S. noctilio infestations,(43,51) followed by an-
ticipated new introductions in subsequent years at
marine ports in the United States and Canada. The
pest’s potential for future entry into eastern North
America was modeled as a function of the value
of imported commodities(52,53) and also incorporated
the impact of new international phytosanitary stan-
dards for all wood packaging and raw wood materi-
als,(54) which were implemented by the United States
and Canada in 2006. The entry potential was assumed
to drop by 50% in 2007 following the adoption of the
new standards and then grow at a 7% annual rate
(see the “high-risk” scenario in Yemshanov et al.(11)).
For each port, a local probability of entry, Wx(t), was
calculated from the volumes of received shipments of
commodities capable of harboring S. noctilio(55) and
ranged between 0.0008 and 0.094 per year.(11)

The successful entries and existing infestations
were then used to simulate spread of the pest in
eastern North America utilizing a coalescing colony
model.(10,11,56) The population spread was estimated
as dependent on the probability of colonization in
the nearest adjacent map location, p0, and the dis-
tance, d, from the nearest known infested location,
constrained by the maximum distance, dmax, at which
new locations may be successfully invaded. In suc-
cessfully invaded locations, the maximum annual
S. noctilio population size and the total damage to
host was constrained by a carrying capacity, k.(10,50)

The establishment of S. noctilio populations de-
pended on availability and susceptibility of hosts
(pines). The susceptibility, sv, sets the establishment
probability for new colonies and was modeled in this
case as a species-specific function of pine stand age
constrained by the maximum value, smax. Higher sv

and smax values generally translate to a higher chance
of pest survival and more severe host damage. Based
on USDA Forest Service susceptibility ratings(57) we
divided pine species into two groups, with smax =
0.95 for species in “very high” and “high” suscep-

tibility groups and smax = 0.5 for species in “low”
and “medium” groups. Insufficient host resource may
hold the S. noctilio population size below the carrying
capacity and limit the overall infestation potential at
a given time step. Therefore, the model also required
tracking the geographical distribution of pine forests
and their growth over time. Maps of pine composi-
tion and age were derived from the National Forest
Inventory for Canada(58) and the USDA Forest Ser-
vice Forest Inventory and Analysis database.(59,60)

The growth of the pine resource and the amount of
host surviving after S. noctilio infestation were mod-
eled via growth rate curves, gj(t), defined separately
for the United States(61) and Canada(10) (see prior
studies(11,50) for details).

We used the simulation model to generate risk
estimates conforming to a definition of risk as the
probability of an undesired event along with some
representation of the consequences of the event.(62)

Based on multiple model replications, we calculate
risk for each geographical location j in eastern North
America as the probability of S. noctilio invasion,
Pj, within a given time horizon (30 years in this
study):

Pj =

Dreps∑
d=1

τ j,d

Dreps
∀τ j,d= [0 | 1], (3)

where τ j,d is the presence-absence of an infestation in
map cell j at the end of the forecast horizon for a sin-
gle model replication d, and Dreps is the total number
of model replications. Essentially, Pj describes the
risk of finding relatively large, established S. noctilio
infestations within an area at least equal to the map
spatial resolution. We also characterized the varia-
tion of Pj values with their standard deviations, σ j, as
a measure of output uncertainty.

2.4. Analysis Overview

We adopted an info-gap approach to explore
how uncertainties in key risk model parameters af-
fect the utility of the output risk maps and pest
surveillance networks. Our concept of using robust-
ness in a spatial setting is somewhat similar to the
studies of Moilanen and Wintle(63) and Moilanen
et al.,(64) where the info-gap approach was applied
to identify an optimal reserve design and map core
protection areas based on habitat suitability mod-
els. In our case, we applied the info-gap concept
to find where our S. noctilio invasion risk map is
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“good enough” in the sense that it is robust to un-
certainties in the model’s parameters while also pro-
viding adequately stable risk estimates. We then
used these results to evaluate the robustness of al-
ternative designs of survey networks for monitoring
S. noctilio to uncertainties about the level of invasion
risk.

Instead of considering alternative decision sce-
narios, ψ (38,65), we first applied an info-gap approach
to evaluate a set of J geographical locations that con-
stitute a risk map. In our case, each location (map
cell) j ( j = 1, . . . , J) was characterized by a unique
risk of invasion, Pj, and its standard deviation, σ j. We
analyzed each location separately and plotted the re-
sults as a map.

We adopted the described model of invasion as
our “process model” (following info-gap terminol-
ogy). Our corresponding model for uncertainty de-
scribes what is unknown about key assumptions in
the process model, defined by a set of parameters, xi.
For this analysis, we considered six key model param-
eters (described in the preceding section) that were
previously identified as having high impacts on risk
estimates:(50) local entry probability (Wz(t)), popula-
tion carrying capacity (k), local probability of col-
onization (p0), maximum distance at which a new
colony may become established (dmax), susceptibil-
ity of the host resource (smax), and the total amount
of host resource available at a given location (gj(t)).
The nominal values for the selected parameters rep-
resent the extent of prior knowledge believed to be
important about invasion. Thus, the model for un-
certainty, H(a), can be defined such that the val-
ues of Wz(t), K, p0, dmax, smax, and gj(t) may deviate
from their nominal values by an unknown fraction.
Assuming a uniform-bound model, we defined sev-
eral nested sets where each parameter deviated from
its nominal value by a proportion a or less (Equa-
tion (2); we assumed wi = 1 for simplicity but rec-
ognize that these values may be refined further if
knowledge about the parameters’ relative errors be-
comes available). Because the value of a was un-
known, we evaluated a set of nested intervals, a ∈
[0.1; 0.5].

To evaluate the “performance requirement,” we
calculated the expected utility metric, Vj(x), based on
two “process model” outputs: risk of invasion, Pj(x),
and its standard deviation, σ j(x), which represents a
measure of output uncertainty. For each location j,
the expected utility metric value was calculated as the
squared Euclidean difference in both risk and stan-
dard deviation values between the estimates based

on the nominal model parameters and the estimates
for uncertainty horizon a:

Vj (x) = − (
[(Pj [x] − Pj [x̄])]2 + [(σ j [x]) − σ j [x̄])]2) ,

(4)

where Pj (x̄) is the risk value at location j based on
the best (nominal) estimates of the model param-
eters, x̄, and σ j (x̄) is the standard deviation of the
risk value based on the nominal estimates. Similarly,
Pj(x) is the risk value at location j evaluated with the
model parameters x, and σ j(x) is the standard devi-
ation of Pj(x). Note that σ j(x) is not independent of
Pj(x) because the calculations used the same “pro-
cess” model simulations for a specific realization of
x. The utility metric value decreases when parametric
uncertainties increase the risk value and/or its varia-
tion. In both cases, map cells with risk and standard
deviation values matching the nominal scenario have
the highest (least negative) utility values, approach-
ing 0. For each map location j, we defined its robust-
ness as the maximum value of the uncertainty hori-
zon, â j , that guaranteed the expected utility Vj(x) to
be no less than the critical threshold Vmin:

â j = max
{

a :
(

min
x∈Hj (a)

Vj (x)
)

≥ Vmin

}
. (5)

Let μ(a) denote the inner minimum in Equa-
tion (5). The μ(a) is the inverse of the function
â j (Vmin), such that a plot of μ(a) versus a is identical
to a plot of Vmin vs. â j (Vmin). To calculate μ(a) we
sampled the info-gap model of uncertainty, H(a), at
horizon of uncertainty a to obtain parameter values
xm over M independent realizations, m = 1, . . . , M.
We used these parameter values to perform N in-
dividual model replications in order to estimate the
probability and standard deviation of infestation, and
the utility, Vj(xm), at location j. The calculation of
Vj(xm) was repeated M times. The lowest of the re-
sulting M estimates of utility was the approximate es-
timate of μ(a):⎡

⎢⎣ xm
xm∈H(a)

Nreps⇒ Pj (xm), σ j (xm) ⇒ Vj (xm)

⎤
⎥⎦

m=1,...,M

Mreps⇒ min
m

Vj (xm) ≈ μ(a). (6)

Equation (6) is a numerical approximation to the def-
inition of μ(a) as the inner minimum of the robust-
ness. Based on the shape of the function min Vj(x)
versus a, it was possible to outline the geographic
areas where risk estimates were more (or less)
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“immune” to uncertainty in model assumptions at a
specified horizon a.

Evaluation of the results requires understanding
the importance of values of Vmin. Because the varia-
tion ranges of Pj(x) and σ j(x) are known (i.e., Pj(x) ∈
[0; 1] and σ j(x) ∈ [0; ∼0.5] for a binary distribution),
the value of Vmin can be associated with certain ex-
pected impacts of parametric uncertainties on the in-
vasion risks. At Vmin = −0.1, there is an average im-
pact of ∼10% change in Pj(x) and σ j(x) values. This
level compromises the numerical risk estimates but
still allows qualitative comparison of what locations
are more or less risky. At Vmin below −0.25, the va-
lidity of even the relative magnitudes of the risk esti-
mates is dubious.

2.5. Decision-Making Scenario

We used the info-gap robustness function as a
decision tool to select the pest survey network that
is most immune to uncertainties about the pest. The
values of the function minVj(x) vs. a (denoted as
minVj(x)[a] hereafter) calculated for individual sur-
vey locations were used to compare three alterna-
tive survey networks for S. noctilio, each consisting
of approximately 1,000 points spread across the east-
ern United States. The networks were designed to
monitor the mid-term expansion of S. noctilio (i.e.,
within a time horizon of 30 years). The geograph-
ical distribution of the survey points in each net-
work follows the principles of a global sampling de-
sign for monitoring environmental phenomena.(66)

Fundamentally, the sampling design starts from a
truncated icosahedron tessellation that divides the
Earth’s surface into 20 hexagon and 12 pentagon
faces, with one hexagonal face centered on North
America. The North American hexagon is defined by
six vertices and a centroid, and this seven-point grid
may be systematically decomposed (by a factor of 3,
4, 7, or any product of these values) to create addi-
tional grid points. The decomposition factor can thus
be used to appropriately increase the density of sur-
vey points within an area of concern (e.g., high-risk
areas). The decomposition factor for a given region
of interest also depends on the area of that region.
Here we use the Coulston et al.(67) approximation to
calculate the decomposition factor, δ, specifying the
number of sample points in a region of interest:

δ = 5783883
(

nu

Au

)
, (7)

where nu is the desired number of sample points in a
map region u, and Au is the total area (in kilometer
square) of the region. As a result, the survey density
and overall spatial configuration of the network both
depend on the spatial arrangement of map regions, u.

In this study, we delineated the U regions of in-
terest from three alternative risk maps. The first vari-
ant employed the map of Pj (x̄) values described in
this study. The U.S. portion of this map was divided
into four risk classes or map regions—high, mod-
erate, low, and very low—defined by break points
where Pj (x̄) was equal to 0.75, 0.25, and 0.05. The
second example was based on a S. noctilio risk map
developed by the USFS Forest Health Technology
Enterprise Team (FHTET).(39) The map portrays
four risk classes, with high risks occurring in areas
with abundant susceptible host (i.e., pine forests in
the southeastern United States) and locations of po-
tential pest introduction (such as marine ports and
urban areas). The third variant used the map of σ j (x̄)
values described in the present study and placed the
highest survey densities in geographic areas exhibit-
ing the highest levels of uncertainty in the risk esti-
mates. The map was divided into four general classes
representing high, moderate, low, and very low vari-
ability of risks, as defined by break points σ j (x̄) = 0.4,
0.2, and 0.05.

For all three examples, 500 survey points were
placed in the high-risk class, 300 in moderate risk, 150
in low risk, and 50 in very low risk, for a total of 1,000
sample points spanning the eastern United States
(Fig. 1). This example assumes at each higher level
of risk, the decisionmaker desires a higher degree of
confidence in survey efforts and a lower threshold for
how extensive an infestation must be before it is de-
tectable. The selection criteria for the optimum sam-
ple size and area are based on principles described in
Coulston et al.(40)

We compared the networks’ robustness to uncer-
tainties about S. noctilio invasion using the functions
minVj(x) [a]. For each survey network, the value of
minVj(x) was calculated from the values extracted
from the corresponding map of the expected utility
metric at the survey point locations.

2.6. Simulation Scenarios

The analysis proceeded as follows. First, we gen-
erated maps of Pj (x̄) and σ j (x̄) using the nominal pa-
rameter values x̄i , and then simulated the scenarios
depicting the nested uncertainty horizons a. We cal-
culated maps of minVj(x) versus a for each scenario
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Fig. 1. Three alternative survey networks for monitoring S. noc-
tilio: a) network based on the map of Pj (x̄) values in the nominal
scenario (this study); b) network based on a risk map constructed
by the USDA Forest Service Forest Health Technology Enterprise
Team (FHTET);(39) c) network based on the map of σ j (x̄) values
in the nominal scenario (this study).

based on a set of M replications that were initialized
with a unique set of randomized xi parameter val-
ues, varied independently within a uniform interval
max[0, ± x̄a] (Equation (6)). Each of the M replica-
tions required a minimum of N independent model
simulations to calculate the maps of Pj(x) and σ j(x)
and stabilize their spatial configuration. Consistent
with the “high-risk” scenario in Yemshanov et al.,(11)

N was set to 300 replications.
To determine the minimum value of M replica-

tions that stabilized the robustness function we used
the sum of the squared differences in minVj(x)[a] val-
ues between the trials using consecutively increasing
numbers of replications:

SM =
√√√√ J∑

j=1

[
min(Vj (x)[ a]M+�M − min(Vj (x)[ a]M)2

]
,

(8)

where minVj(x)[a]M and minVj(x)[a]M+�M are the
inverse robustness functions for a location j, at an
uncertainty horizon a, based on M and M + �M
number of replications. Another informative conver-
gence metric was the relative change in the map area
occupied by the minVj(x)[a] values above −0.2 and
below −0.8 (i.e., representing high and low robust-
ness to uncertainties):

YM =
√

(AMmax − AM)2, (9)

where AM is the area occupied by a given range of
minVj(x)[a] values based on M number of replica-
tions and AMmax is the same area based on the max-
imum number of replications used in the analysis.
Fig. 2 shows the number of replications required to
stabilize the risk maps at the uncertainty horizons
a = 0.1, 0.3, and 0.5. In all cases, the robustness maps
started to stabilize after 140 replications, so Mmax was
set to 300. Overall, the analysis required undertaking
M × N individual model simulations for each hori-
zon of uncertainty, which represented a heavy com-
putational task. The total number of model replica-
tions was thus limited by the available computing
capacity, but included 270,000 individual model sim-
ulations for a = 0.1, 0.3, and 0.5.

3. RESULTS

3.1. Risks of Invasion and Their Variations

Figs. 3a and 3b show, respectively, the risk of
S. noctilio invasion, Pj (x̄), and its standard devia-
tion, σ j (x̄), for the scenario based on the nominal
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Fig. 2. Number of iterations, M, needed to stabilize the maps
of robustness: a) a = 0.1; b) a = 0.3; c) a = 0.5. Stabilization
metrics: YM shows relative change in the map area occupied by
the minVj(x)[a] values above −0.2 and below −0.8 (best and
worst robustness to uncertainties) and also the SM values. The
scenarios for the uncertainty horizons a = 0.1, 0.3, and 0.5 are
shown.

parameter values. The maps replicate a “high-risk”
scenario described in Yemshanov et al.(11) As ex-
pected, the areas to which the current S. noctilio in-
festations are expected to expand have very high risk
values close to 1. The risk map (Fig. 3a) shows two
major regions of concern: (1) Ontario, Quebec, and
the northeastern United States; and (2) an area ex-
tending south from Virginia, with a concentration of
high-volume pine forests and high-capacity marine
ports. The southeastern U.S. coast, with its abun-
dant pine forests, shows moderate risks of invasion,
mostly contributed by potential new entries at ma-
rine ports. The map of σ j (x̄) (Fig. 3b) displays similar
geographical patterns. The highest variation in risk
values is associated with the projected main front of
invasion and areas of abundant host in the southeast-
ern United States. Overall, σ j (x̄) is higher in areas
with more heterogeneous host distribution (Fig. 3b).

Figs. 4a and 4b show average absolute differ-
ences in Pj(x) and σ j(x) values between the scenario
using the nominal parameter values and the scenario
for uncertainty horizon 0.5 (we present only one hori-
zon here, as the scenarios using other values of a re-
vealed similar geographic patterns). Risk values re-
main stable only in close proximity to the currently
infested extent (Fig. 4a) and in interior continental
areas (Illinois, Iowa, and Missouri). The highest ab-
solute differences are found on the southeastern U.S.
coast and in the northern Lower Peninsula of Michi-
gan as well as northern Canada. Nearly the entire
study area shows differences in σ j(x) versus σ j (x̄)
except currently infested regions and interior states.
The largest deviations are found along the eastern
U.S. coast near North Carolina and Virginia, in the
southern Appalachian Mountains and in the west-
ern Great Lakes region (Fig. 4b). Another hotspot
is shown in the boreal forests in Canada.

3.2. Robustness Values

Figs. 5a and 5b show maps of the expected util-
ity values, minVj(x)[a], for the uncertainty horizons
a = 0.3 and 0.5, respectively. For the relatively strict
utility threshold Vmin = −0.1 and the relatively high
uncertainty horizon a = 0.5, the risk map is charac-
terized by high robustness to uncertainties within a
∼400 km radius of the first S. noctilio entry (i.e., the
port of Oswego, NY) as well as in interior U.S. con-
tinental areas, namely, southern Iowa and northern
Missouri (Fig. 5b, areas shaded in white). The re-
gions with the lowest robustness to uncertainties, in
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Fig. 3. Classified maps of S. noctilio infestation risks, Pj (x̄), and their standard deviations, σ j (x̄), for the nominal scenario: a) Pj (x̄);
b) σ j (x̄).

Fig. 4. Maps of absolute differences in Pj(x) and σ j(x) values between the scenario for uncertainty horizon a = 0.5 and the scenario based
on the nominal parameter values: a) absolute differences in Pj(x); b) absolute differences in σ j (x̄).
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Fig. 5. Maps of the expected utility values, minVj(x) vs. a, for the uncertainty horizons a = 0.3 and 0.5: a) minVj(x) for a = 0.3; b) minVj(x)
for a = 0.5. I, II, III—broad spatial zones based on the robustness curves.

northern boreal Canada and the southeastern United
States, were linked to areas with high concentra-
tions of host species (pines). Northern pine forests
in Canada and the upper U.S. Midwest have 20–
30% lower robustness than the U.S. southeastern
pine forests due to a more heterogeneous geograph-
ical pine distribution and closer proximity to existing
S. noctilio infestations (Fig. 5b). At the lower uncer-
tainty horizon, a = 0.3 (Fig. 5a), the risk map remains
robust in most areas except the southeastern United
States and northern Canada, as well as portions of
the U.S. Atlantic coast.

Expectations regarding the confidence in risk es-
timates also change the robust portion of the map.
Fig. 6 shows the percentage of the 390 M km2 map
area that is robust to uncertainties under the expec-
tations of minVj(x) = −0.1, −0.25, and −0.5. Specif-
ically, the horizontal axis is the value of the robust-
ness, a, and the vertical axis is the percentage area
with at least this level of robustness. In all cases,
most of the map area is robust to uncertainties for
a = 0.1. At higher a values, we see differentiation be-
tween regions, with fewer and fewer regions remain-
ing robust to uncertainties. Furthermore, the fall-off
in percentage of robust area is more pronounced for
more demanding aspirations (i.e., for the higher util-

ity threshold values, particularly minVj(x) = −0.1).
Percentages of robust map area for three distinct ge-
ographic regions—eastern Canada, the northeastern
United States, and southeastern United States—are
also shown in Fig. 6. The Canadian portion of the
study area appears the most vulnerable to uncertain-
ties. For the higher aspirations of minVj(x) = −0.1
and −0.25, the percentage of the map area that has
robustness of at least a = 0.3 declines to 52% and
69%, respectively, relative to the nominal scenario.
In contrast, these reductions amount to only 83% and
91% in the northeastern United States, and to 69%
and 80% of map area in the southeastern United
States.

3.3. Robustness of the Pest’s Survey Networks
to Uncertainties

We compare the three alternative survey net-
works for S. noctilio using the Vmin versus â func-
tions calculated at individual survey locations. We
sample the maps of minVj(x) [a] at the locations,
u, that constitute the network of pest surveys, u =
1, . . . , U (Fig. 1). Fig. 7 shows the mean values of
the robustness curves for the northeastern and south-
eastern United States as well as the entire eastern
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United States. The robustness curves are useful in
understanding the dependency between the quality
of the outcome (expressed by Vmin) and the confi-
dence in obtaining that outcome (expressed by the
robustness to uncertainty, â), that is, Vmin versus â.
This dependency is implicit in the declining slope of
these robustness curves. Fig. 7 shows that the sur-
vey network based on the map of σ j(x̄) values from
this study is the most robust to uncertainties over-
all (decision curve 3 in Fig. 7). The network based
on the FHTET risk map exhibits robustness similar
to the σ j (x̄) case in the southeastern United States,
and even slightly higher when expectations regard-
ing the quality of risk predictions are low (i.e., â =
0.5, Fig. 7c)). This is because the majority of sur-
vey points in both networks are placed within, or in
close proximity to the susceptible host resource in the
southeastern United States (where the uncertainties
about invasion are the highest; see Fig. 3b)). The net-
work based on the maps of Pj (x̄) values shows the
lowest robustness across all three regions (Fig. 7a)),
especially in the southeast where it is significantly
less robust than the networks based on the FHTET
risk map and σ j (x̄). The robustness premium can be
substantial. For instance, in the northeastern United
States, the network based on Pj (x̄) values shows ro-
bustness of about 30% (0.3) at Vmin = −0.2, while the
robustness of the network based on the σ j (x̄) values
is about 45% (0.45). In other words, the latter net-

work can tolerate 15% more uncertainty in the criti-
cal parameters without violating the performance re-
quirement (i.e., the utility value, Vmin, no less than
−0.2).

Fig. 7c) shows an example of preference rever-
sal in the southeastern United States: the network
based on the FHTET map is slightly more robust
(and hence preferred) at expectations of low-quality
knowledge about the invasion (i.e., a ≥ 0.5), while
the network based on σ j (x̄) is a better choice given
expectations of higher-quality information about the
pest of interest. The preference reversal is very mi-
nor; however, it shows up consistently after M > ∼80
model replications (Equation (6)). In the U.S. North-
east, the network based on σ j (x̄) is clearly a better
choice than the others, especially under the assump-
tion of poor-quality knowledge about the invasion
(i.e., a ≥ 0.5).

4. DISCUSSION

The approach presented here evaluates the ro-
bustness of pest risk maps to uncertainties in key
assumptions about an invading organism. The incor-
poration of the robustness concept becomes an im-
portant decision-making component as it may lead
to more risk-aware decisions in implementing pest
management and mitigation activities. In fact, select-
ing the survey network that is most stable in the
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face of “unknowns” about a new pest also offers cost
advantages, especially when the predicted extent
of the outbreak is potentially large and the con-
sequences are possibly grave. This is an important
practical consideration given that decisions about
monitoring and regulation are often made under the
pressure of limited time and severe lack of informa-
tion about the new invasive pest.

From a decision theory perspective,(68) risk map-
ping represents an example of decision making un-
der severe uncertainty. Risk assessments under these
circumstances typically reflect a decisionmaker’s ig-
norance regarding the probability of an undesired
event, which tends to lead toward a quite restricted
characterization of the relative likelihood of the
event (i.e., simply trying to ascertain if there is any
risk of invasion). In an ideal situation, assessments
would determine the precise probability of an unde-
sirable event (i.e., would generate quantitative risk
values), but the case of severe uncertainty leaves lit-
tle opportunity to do this because the information
that is available about a new invader is generally too
vague to do accurate probabilistic assessments. Our
approach shows how to address that issue in a more
systematic and repeatable manner, and thus can be
viewed as a valuable decision support tool in the case
of a poorly understood new invader.

4.1. Geographical Patterns of the Robustness
to Uncertainty

Maps of the expected utility metric illustrate
where risk estimates are most robust to uncertainty.
Boreal and subboreal Canada, and the portion of the
northeastern United States proximal to the current
S. noctilio outbreak, exhibit the lowest robustness.
Pine regions in the southeastern United States also
have low robustness, while interior continental areas
in the central United States exhibit general robust-
ness to uncertainty. This, however, is only because
the underlying risk model allows limited new entries
at major marine ports. Interior areas would be less
robust to uncertainty if the risk model allowed for the
possibility of new entries at inland urban locations.

Importantly, the maps show a consistent 20–30%
difference in robustness between the northern bo-
real and southern pine forests. This is clearly the re-
sult of closer proximity to the existing S. noctilio out-
break and higher spatial heterogeneity of northern
pine forests (where mixed conifer–hardwood stands
are typical).

On a larger scale, the results reveal systematic
patterns of how uncertainties in risk model parame-
ters change the reliability of the risk map. These pat-
terns can be aggregated in three broad zones with dis-
tinct robustness curves, Vmin versus â. The first zone
(shown as region I in Fig. 5a)) exhibits good robust-
ness to uncertainties with relatively high â values for
the entire range of Vmin, as well as high invasion risks
with low variability or output uncertainty (the areas
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in Fig. 5 proximal to the current S. noctilio infesta-
tions). Essentially, this zone represents the “known
knowns” with respect to an invasion and demarcates
where risk estimates are defined with confidence.

As a rule, the second zone (region II in Fig. 5a))
includes the projected leading edge or front of in-
vasion at the forecast time horizon and is character-
ized by moderate risks and high variability of the ro-
bustness to uncertainty. The region includes the bulk
of pine forests in the southeastern and northeastern
United States and eastern Canada. This is a zone of
“known unknowns,” where current knowledge about
the invading organism suggests a possibility of inva-
sion but is not sufficiently detailed to predict exactly
where and when invasion will occur.

The third region (depicted as zone III in Fig. 5a))
usually encompasses areas beyond the projected in-
vasion front. This zone is characterized by relatively
low risks with low variability and apparently very
good robustness to uncertainties (e.g., the area re-
maining robust in the United States west of Iowa,
Fig. 5). However, this zone may also include condi-
tions where the current knowledge about an invader
is too limited to quantify future risks properly (e.g.,
lack of data about the potential introductions at in-
land sites in our case). Interpreting these regions of
“unknown unknowns” requires extreme caution be-
cause assessments made under severe lack of knowl-
edge about invasion often display low risks and thus
may promote a false confidence.

Overall the geographic variation of the robust-
ness to uncertainties can be explained by the inter-
action of three main drivers of the invasion: the ge-
ographic distribution of a susceptible host resource,
anticipated spatial extent, and the rate of spread of
the invasion. For example, the southern U.S. coast
shows moderate risks of invasion, yet this area shows
very low robustness to uncertainties due to abundant
susceptible host. Similarly, northern Canada and the
portion of the upper Midwest region that lies west of
the Great Lakes are characterized by moderate risks
of infestation, but exhibit the worst robustness to un-
certainty due to close proximity to existing infesta-
tions.

4.2. Info-Gap Theory and the Design of the Pest
Survey Networks

The info-gap approach seems useful for the coor-
dination of monitoring efforts during early stages of
an invasion, when knowledge about a pest is scarce.
Regarding the broad invasion zones outlined in the

previous section, the “known knowns” zone does not
require a dense survey network because of high con-
fidence in the risk estimates. The zone of “known
unknowns” may require the highest density of ob-
servations (especially in the areas with the lowest
robustness to uncertainties) because this is where the
reduction of uncertainty will have the highest impact
on the reliability of risk estimates. The zone of “un-
known unknowns” also calls for a certain minimum
survey density to test whether the “low-risk” desig-
nation is actually the result of severe lack of knowl-
edge about the pest. A comparison of the alternative
survey networks presented here illustrates how con-
fidence in predicting invasion risks depends on ac-
counting for uncertainties in the knowledge regard-
ing an invasive pest. In the optimal network design, it
seems that the density of survey observations should
correlate with the estimated uncertainties in the risk
predictions, rather than the actual risk values. In our
example, the network based on the map of σ j (x̄)
appears most robust to poor knowledge regarding
S. noctilio.

Interestingly, the network based on the FHTET
risk map shows high robustness despite the fact that
uncertainties in the underlying assumptions about
S. noctilio were not considered explicitly.39 Both the
FHTET and σ j (x̄) maps identify regions of pine
forests in the southeastern United States as primary
areas of concern. This suggests that uncertainties
may have been included implicitly via ranking of the
component variables in the FHTET maps. The info-
gap concept provides an alternative and perhaps bet-
ter way of incorporating these uncertainties in the de-
sign of pest monitoring and mitigation activities.

4.3. Practical Application Issues

While our results illustrate the basic concept,
practical application of the info-gap approach in pest
risk mapping will require resolution of several issues.
First is the formulation of an appropriate expected
utility metric. Our current analysis weighted Pj(x)
and σ j(x) equally, which thus makes any changes in
risk values twice as influential as changes in their
variation (simply because Pj(x) ranges between 0 and
1 and σ j(x) between 0 and ∼0.5). Alternatively, these
weights may be influenced by the decisionmaker’s
behavior. For instance, a risk-averse decision style
might assume a higher importance for σ j(x) than
Pj(x). The expected utility metric may also incorpo-
rate other considerations deemed important, for ex-
ample, the distance to existing infestations and/or the
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costs of the failure to detect the pest in certain ge-
ographic areas (e.g., regions in the southern United
States with high-volume pine forests).

Second, the study only considers unbounded
parametric uncertainties with respect to the underly-
ing invasion risk model. We have not evaluated other
uncertainties associated with the quality of geograph-
ical information or the formulation of the risk model.
Assessing model uncertainty represents a challenge
because alternative models often have different pa-
rameter spaces, for example, a relatively simple trav-
eling wave model(56) versus a complex population
model.(69) Potentially, this issue can be addressed
with the idea of Wald’s worst-case scenario(70) or en-
semble analysis.(33,34) The latter approach, however,
has been criticized for its inability to identify a “cor-
rect” model.(31) In addition, under severe uncertainty
it may not be possible to reliably identify a worst
case.

The third big concern is the appropriateness of
the simulation risk model as formulated. We are cur-
rently exploring alternate representations of S. noc-
tilio entry in the context of human-mediated dis-
persal. This includes the simulation of long-distance
spread via a freight transportation network and sub-
sequent accidental entries near urban areas or distri-
bution centers. On a temporal scale, entry potential
will also require a more detailed portrayal of future
impacts of the FAO-IPPC(54) phytosanitary rules and
better understanding of which commodities and car-
goes are likely to harbor the pest.

5. CONCLUSIONS

Decisionmakers routinely respond to invasive
pest threats under circumstances where relatively lit-
tle is known about a new invader. Despite this se-
vere uncertainty, they face the problems of clari-
fying the likelihood and impact of new outbreaks,
planning control strategies, and subsequently esti-
mating their cost effectiveness to provide justifica-
tion for their choices. Risk maps represent an im-
portant decision support tool but they often fail to
represent their intrinsic uncertainties clearly and
meaningfully. In this article, we have used an info-
gap approach to assess the robustness of pest risk
maps to uncertainties about the pest and applied the
results to inform the selection of a survey network
for pest monitoring. The analysis uses a simulation
model to generate the risk map of invasion and eval-
uates how uncertainties change the mapped risk es-
timates and their variation. The results show the de-

pendence between the acceptable horizon of uncer-
tainty about a new invader and the reliability of the
risk map. Perhaps our most interesting finding is that
robustness to uncertainty varies systematically be-
tween distinct geographic regions that will require
different strategies for pest monitoring and other
management efforts. This may provide decisionmak-
ers with a better understanding of the reliability of
risk maps and allow them to explicitly account for un-
certainties and knowledge gaps in their decision pro-
cess. Overall, the approach is fairly generic and can
be applied to other invasive threats and quantitative
risk models.
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