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Abstract: In this paper we provide an overview of an integrated approach to modelling the risks and impacts associated
with non-indigenous forest pest species. This is a broad and important topic given the scale of ecological and economic
consequences associated with non-indigenous species in North America and elsewhere. Assessments of risks and impacts
remain difficult due to complexities and interactions between the many factors driving invasions and outcomes. These
processes occur across various spatial and temporal scales, and are often influenced and complicated by human activities.
For each component of an ecological invasion (i.e., arrival, establishment, and spread), we review general approaches for
modelling the phenomenon and identify data and knowledge gaps. With the greater availability of various spatial data and
computational power we suggest the possibility of linking the models for each invasion component into a more integrated
framework, thus allowing interactions and feedbacks between components to be better incorporated into risk modelling ef-
forts. The approach is illustrated using examples from current work with Sirex noctilio Fabricius — a relatively new inva-
sive wood wasp in eastern North America.
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Résumé : Les auteurs présentent le survol d’une approche intégrée pour la modélisation des risques et des impacts asso-
ciés aux pestes forestières non indigènes. Il s’agit d’un sujet large et important, compte tenu de l’échelle et des conséquen-
ces économiques associées aux espèces non indigènes, en Amérique du Nord et ailleurs. Les évaluations de risques et
d’impacts demeurent difficiles à cause de la complexité et des interactions avec plusieurs facteurs responsables des inva-
sions et de leurs conséquences. Ces processus s’effectuent selon différentes échelles spatio-temporelles, et sont souvent in-
fluencés et compliqués par les activités humaines. Pour chaque composante d’une invasion écologique (c.-à-d. arrivée,
établissement et diffusion), les auteurs passent en revue les approches générales pour la modélisation du phénomène ainsi
que l’identification des données et les manques de connaissance. Avec la disponibilité accrue de diverses données spatiales
et des capacités informatiques, les auteurs suggèrent la possibilité de lier les modèles de chaque composante dans un cadre
plus intégré, permettant ainsi de mieux incorporer les interactions et les rétroactions entre les composantes dans les efforts
de modélisation des risques. On illustre cette approche en utilisant des exemples provenant du travail actuel sur le Sirex
noctilio Fabricius, une guêpe perce-bois envahissante relativement nouvelle dans l’est de l’Amérique du Nord.

Mots-clés : espèces envahissantes, modélisation intégrée, évaluation des risques, évaluation des impacts, Sirex noctilio.

[Traduit par la Rédaction]

Introduction
The management of non-indigenous species is complex,

but critical given potentially large economic and ecological

impacts. Gross annual economic losses and control costs in
agricultural and forestry sectors due to non-indigenous spe-
cies have been estimated to be greater than US$110 billion
in the USA (Pimentel et al. 2005) and greater than US$7.5
billion in Canada (Dawson 2002). A similar estimate of the
combined economic impact of non-indigenous species on
agriculture and forestry in six countries (USA, UK, Aus-
tralia, South Africa, India, and Brazil) exceeds US$300 bil-
lion per year (Pimentel et al. 2001); this analysis further
suggests the worldwide impact of non-indigenous species
could exceed US$1.4 trillion annually, or nearly 5% of the
global domestic product. From an ecological perspective,
non-indigenous species may alter the composition of native
forest ecosystems and associated biodiversity (Merriam and
Feil 2002). They may pressure, or even extirpate, species
from large areas of their natural range (Latimer et al. 2004;
Russell 1987), in some cases impacting forest foundation
species such as the American chestnut (Castanea dentata
(Marsh.) Borkh.) in the eastern USA or jarrah (Eucalyptus
marginata Donn ex Sm.) in Western Australia (Ellison et
al. 2005). Furthermore, new invaders may reduce recruit-
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ment rates and alter disturbance dynamics in natural ecosys-
tems (Drake et al. 1989; Fagan and Peart 2004; Brooks et al.
2004).

The ongoing expansion of international trade is a key fac-
tor in this global-scale issue (Perrings et al. 2005), as a na-
tion’s non-indigenous species diversity is strongly related to
its level of trade (Westphal et al. 2008). Not surprisingly,
addressing the issue of exotic pests has become an important
component of many trade and environmental policy agree-
ments (Andersen et al. 2004a). Risk assessments for non-in-
digenous species are now standard procedure as prescribed
by the World Trade Organization (WTO 1993). Nonetheless,
far fewer countries mandate risk assessments for pests than
for other environmental threats (e.g., pollutants), perhaps be-
cause the proportion of introduced species that actually be-
come established pests is extremely low. As a rule of
thumb, one in ten introduced species escapes into native en-
vironments, one in ten of these escapees establishes, and one
in ten established species spreads in an invasive manner
(Williamson 1996). Some introductions even provide eco-
nomic benefits (Keller et al. 2007).

Whether or not pest risk assessments are standard prac-
tice, invasive species are constantly emerging that require
quantitative evaluation of the risks and potential impacts in-
volved (Levine and D’Antonio 2003). Because the economic
and environmental consequences of a successful invader are
irreversible (Saphores and Shogren 2005), management de-
cisions are often made quickly out of apparent necessity, de-
spite a paucity of reliable information about the invading
organism. Moreover, most nations can only afford to collect
limited data regarding the parameters of a biological inva-
sion, meaning efficiency of effort is paramount (Saphores
and Shogren 2005). These circumstances thus call for a
strong but focused scientific foundation to support rapid as-
sessments — ideally integrated with monitoring, mitigation,
and even prevention efforts. These issues can be addressed
with the aid of integrated modelling, which formalizes as-
sumptions about the invading organism and uses them to
quantify potential risks and impacts.

The integrated modelling concept

There are numerous models focusing on certain aspects of
biological invasions. For example, with respect to the initial,
introduction phase of invasions, there have been regional-
and global-scale efforts (Higgins et al. 1999; Davis and Pel-
sor 2001; Rouget and Richardson 2003; Thuiller et al. 2005)
to identify geographic areas or ecosystems susceptible to
successful introductions of non-indigenous species (i.e.,
which have high invasion likelihood), as well as attempts to
predict which out of a set of species will be successful in-
vaders (Veltman et al. 1996; Reichard and Hamilton 1997;
Kolar and Lodge 2001; Frappier and Eckert 2003; Marchetti
et al. 2004). Notably, few such studies have evaluated inter-
actions between invasion potential and spread (Barney and
Whitlow 2008). Other analyses have concentrated on later
phases of invasions, for instance modelling the risk of estab-
lishment in new areas for recently detected non-indigenous
species with still-restricted geographic distributions (e.g.,
Zalba et al. 2000; Morrison et al. 2004; Lippitt et al. 2008).
In fact there are surprisingly few peer-reviewed studies of

the ex ante (potential) ecological (e.g., Ricciardi 2003) or
economic impacts (e.g., Cook et al. 2007; Cook and Mathe-
son 2008; Juliá et al. 2007) of individual invaders.

For specific species of concern, it is possible to quantify
overall threats by aggregating and summarizing the outputs
generated by individual specialized models (Pimentel et al.
2000; Allen and Humble 2002). However, this technique
often misses the interactions and feedbacks between the var-
ious processes behind the invasion and may lead to miscal-
culation of the risks and impact projections. Alternatively, a
more integrated modelling approach portrays an invasion as
a simulation or optimization process that follows the typical
flow of an exotic pest outbreak. This process starts with an
introduction event as a result of trade and other human ac-
tivities (Williamson 1996); once established in a new loca-
tion, the invading organism spreads through the landscape
causing host damage and mortality, which generates direct
economic and environmental losses and triggers secondary
social and economic impacts. All these processes occur
under various geographical conditions and thus create intri-
cate patterns in time and space (Fig. 1). Integrated models
range in complexity from simple analytic approaches (e.g.,
Sharov and Liebhold 1998) to detailed, multi-phase mecha-
nistic models driven by empirical data (such as Sharov and
Colbert 1996). An appropriately integrated model should in-
clude both biophysical components (to simulate the impacts
of the invading organism on a host resource), and non-bio-
physical aspects that estimate economic, social impacts, and
other consequences.

This paper provides an overview of an integrated model-
ling approach for non-indigenous species. For each of the
key components of a biological invasion, we review perti-
nent literature, outline data and knowledge needs, and illus-
trate model results from our work with Sirex noctilio
Fabricius, an invasive wood wasp recently discovered in
eastern North America. In the final section, we discuss
model integration and outline advantages of the integrated
approach.

Entry potential
The majority of non-indigenous species have been intro-

duced to North America via transport of imported goods
(Levine and D’Antonio 2003; Costello et al. 2007). This
method of entry has become increasingly important as the
volume of global trade has risen rapidly over the last dec-
ade: 7.4 billion tonnes in world seaborne trade in 2006, a
4.3% increase on the previous year (UNCTAD 2007). For
decades, inspections at ports of entry have routinely detected
unwanted organisms not just in cargoes but — particularly
with respect to wood-boring insect pests — in their packag-
ing as well (Brockerhoff et al. 2006; Haack 2006). This has
prompted the recent development of stringent international
phytosanitary standards for raw wood and wood packing
materials (FAO-IPPC 2006).

For any given invading organism, an assessment of its en-
try potential can be seen as two separate analyses: identifi-
cation of likely pathways for the invading organism to
travel from countries of origin (Andersen et al. 2004b), and
estimation of the entry potential at individual locations
within the geographic area of interest (which may include
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inland locations beyond initial ports of entry). The first anal-
ysis includes evaluation of the worldwide distribution of a
species of concern, which permits identification of possible
countries of origin (Magarey et al. 2007). It also includes as-
sessment of likely import pathways, which can be accom-
plished by examining pest interception records as well as
the status of commercial activities (e.g., timber production)
with which the species is associated in origin countries
(Baker et al. 2005; Magarey et al. 2007; Piel et al. 2008).
The results may be used to establish a continuum of pest sur-
veillance at ports of entry (Magarey et al. 2007). The second
analysis focuses on pathways of imported goods after they
enter at ports and evaluates the entry potential at final desti-
nation points (such as distribution centres and urban areas).
Increasing volumes of container shipments and an ever-ex-
panding transportation network in North America highlight
a need for the evaluation of the flow of goods and commod-
ities via major transportation corridors (Porojan 2001; De
Jong et al. 2004; LeSage and Kelley Pace 2005; LeSage and
Polasek 2006) and the volumes of intercity commodity trans-
ports (Black 1972; O’Sullivan and Ralston 1974).

Unfortunately, data relevant for calculating entry potential
are often incomplete and inconsistent; for example, data for
both domestic and international commodity flows omit cer-
tain trade sectors (Baker et al. 2005). One potential solution
is to predict the entry potential at two levels: a global (i.e.,
broad-scale) likelihood of entry and a spatially explicit set
of local entry probabilities that apportion the global entry
potential into localized estimates for particular ports of entry
(Herborg et al. 2007; Yemshanov et al. 2009b — see Fig. 2
for example with S. noctilio). This approach allows one to
use separate data assumptions for global and local estimates
and to test a wide range of local entry hypotheses independ-
ent of the global entry potential. For example, inland sites
(such as distribution centres and urban areas) can be incor-
porated into the apportionment of entry potential among in-
dividual locations without changing the global entry
potential. The approach also offers the opportunity to use
more advanced transportation network and commodity flow
models (similar to de Vos et al. 2004) to quantify the entry
potential for a large, diverse set of locations.

Several attempts have been made to assess the global en-
try potential of non-indigenous species at the continental
level (McCullough et al. 2006; Ameden et al. 2007; Yem-

shanov et al. 2009b; also see Yamamura et al. 2001 for a
national-scale example). Data available for such exercises
include the total value of imports (e.g., Donnelly 2001 for
USA and StatsCan (2008a, 2008b) for Canada), tonnages
for specific marine import categories (e.g., USACE 2006
for USA and StatsCan (2003a, 2003b, 2004, 2005, 2007)
for Canada) or proprietary databases such as USDA APHIS
Port Information Network (PIN) interception records at ports
of entry (McCullough et al. 2006) or USDA APHIS PPRIS
database (Cohen et al. 1995). As depicted in the aforemen-
tioned examples, an analysis may be refined in a straightfor-
ward fashion by focusing only on commodity categories and
countries of origin with which the species of interest has
been previously associated.

Notably, entry potential is a dynamic variable that
changes through time. Several studies have modelled global
and local entry potential as a function of climate variables
(Magarey et al. 2007), specific weather phenomena (such as
El Niño), or certain socio-political and economic events
such as the impact of new trade rules (Costello et al. 2007).
Representing entry as a dynamic variable is likely more
realistic than point-based techniques (Jarvis and Baker
2001) and also accounts for the possibility of multiple rein-
troductions over time (Rafoss 2003).

A number of recent studies have employed artificial neu-
ral network algorithms called self-organising maps (SOMs)
to investigate entry and establishment potential of non-
indigenous species based on cohabitation elsewhere in the
world (Watts and Worner 2004; Gevrey and Worner 2006).
Self-organising maps are used to project high dimensional
global pest presence–absence data vectors onto a topological
rectangular grid arranged as a hexagonal lattice (called a
map) whilst preserving the similarities and differences be-
tween the data vectors (Gevrey et al. 2006). Establishment
potential of each species is classified according to their
weight of association to nodes within the map. The robust-
ness of maps to changes in presence–absence status and dy-
namics of entry potential (i.e., changing trade environment,
climate variability, etc.) is yet to be fully tested, but SOMs
analysis has proved successful in investigating other com-
plex ecological problems (e.g. Chon et al. 1996; Lek et al.
1996; Paruelo and Tomasel 1997; Lek and Guegan 1999;
Giraudel et al. 2000; Brosse et al. 1999, 2001; Céréghino et
al. 2001; Park et al. 2003).

Fig. 1. The integrated modelling concept — showing the typical invasion process and resulting impacts. Gridded colors represent spatial
heterogeneities associated with individual map locations in a two-dimensional landscape.
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Spread
Whether a successfully introduced species is considered

invasive rather than non-invasive in its new environment de-
pends primarily on its ability to spread widely from the
point(s) of entry (Kolar and Lodge 2001). Thus, it is not sur-
prising that the spread of invading organisms remains one of
the most intensively studied themes in ecological modelling
(Royama 1992; Neubert and Caswell 2000; Okubo and
Levin 2002; Nathan 2005). Two broad modelling ap-
proaches exist for forecasting the spread of non-indigenous
species (Hastings 1996). The first approach employs theoret-
ical analytic spread models such as reaction-diffusion travel-
ing wave or stratified diffusion models (Shigesada et al.
1995; Kot et al. 1996; Sharov and Liebhold 1998) and uses
field observation data to fit an analytic model to historical
rates of spread (Holmes 1993). The analytic models are rel-
atively simple and have been well studied (e.g., Royama
1992), but often lack feedbacks to biophysical and ecologi-
cal factors. The approach also assumes that the future rate
of spread will remain the same as the historical rate, which
is not always true. There have been extensive studies to test
this assumption against field data for a broad range of spe-
cies (e.g.: Noble 1974; Lubina and Levin 1988; Yachi et al.
1989; Andow et al. 1993; Shigesada and Kawasaki 1997). In
particular, failure to account for long-distance dispersal in
analytical models has been a principal cause of underesti-
mating true spread rates (Andow et al. 1990; Waage et al.
2005). Furthermore, observational data may simply be insuf-
ficient to characterize the rate of spread for a recent invader
(Liebhold and Tobin 2008).

The second modelling approach incorporates detailed em-
pirical information about the biology and behavior of the
invading organism and relies on mechanistic (or process-
based) algorithms that do not have analytic solutions; vari-
ous ecological feedbacks may also be included (BenDor et
al. 2006; Sharov and Colbert 1996). The parameter fitting
procedures, however, often lack the transparency of analytic
models and rely on expert knowledge about an invader —
knowledge presumably gathered through research in the in-
vader’s previously known range. While these models may
be seen as realistic with incorporation of species’ life cycles
and ecological preferences (Sharov and Colbert 1996), they
can be difficult to validate and parameterize.

In general, spread models include at least three key com-
ponents in various implementations (Neubert and Caswell
2000; Nathan 2005; BenDor et al. 2006): (1) population
growth, (2) dispersal (or actual spread), and (3) establish-
ment at newly colonized locations. Each of these compo-
nents is reviewed below.

Population growth
Ideally, modelling population growth proceeds from a

thorough understanding of an invader’s life cycle, climatic
and environmental preferences, and other primary factors
controlling its growth and mortality (Royama 1992). Life
cycles, and interactions with host species, are being inten-
sively studied for some new invaders (e.g., emerald ash
borer, Agrilus planipennis, in North America: Bauer et al.
2003; Lyons et al. 2003), but are poorly understood in
many cases (e.g., S. noctilio; Haugen and Hoebeke 2005).

Fig. 2. Sirex noctilio entry potential for major marine ports in eastern North America. The size of the circle indicates the probability of
entry at each port.
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Model development is often driven by data availability; spe-
cies with more comprehensive geographic distribution re-
cords and life cycle details may be candidates for more
detailed models (see discussion in Hastings et al. 2005). For
some non-indigenous species, certain population model sim-
plifications may be sidestepped by substituting characteris-
tics from similar but better-understood species (see BenDor
et al. 2006). Furthermore, extensive research on the popula-
tion ecology of rare species, while undertaken largely for
conservation purposes, has also proved instructive for mod-
elling the early-stage population dynamics of non-
indigenous species, which start with low population numbers
as well (Liebhold and Tobin 2008). In short, reasonable
models of population growth through time can be specified
for many new invaders, albeit with some simplifying (yet
testable) assumptions. Simplification is often driven by the
apparent lack of observation records about new species but
attempts to fit the population behavior to general knowledge
about an invading organism or the data gathered in its native
range.

Dispersal
In generic terms, dispersal models link the positions of

newly emerging individuals to the positions of their parents
(van den Bosch et al. 1992). This can be depicted as a "dis-
persal kernel" K(x,y,z) that denotes the probability that an
offspring from an individual born at location x at time z
will start life at location y. In the general case, the kernel K
can be defined as a probability density function (Neubert
and Caswell 2000) for location y to which an individual at
location x disperses. The probability density function K usu-
ally specifies how emerging adults spread to other locations.
For example, in a simple one-dimensional case with a dis-
crete time interval, the population density at the location x
at time step t+1 will be the sum of the contributions from
all locations y with viable adults:

½1� nðx; tþ 1Þ ¼
Z þ1
�1

Kðx; y; zÞb½nðy; z; tÞ; y�nðy; z; tÞdy

where n(y,z,t) is population density at location y at age z and
time t, and b[] is the net per capita population growth rate
(Neubert and Caswell 2000). Various population growth
models may be used to calculate b[] (see preceding section).

The shape of the probability density function K greatly af-
fects the rate of spread and overall model behavior (Kot et
al. 1996), but finding dispersal kernels that fit actual spread
rates calculated from field observations can be challenging.
The most basic kernel shape can be defined by a Gaussian
probability-density function that produces a diffusion spread
with constant velocity (Kot et al. 1996). However, several
studies suggest that the Gaussian and other simple, com-
monly used kernels, such as the negative exponential, do
not reflect the high proportional influence of long-distance
dispersal that observational data on invasions often indicate
(Chapman et al. 2007). For instance, an invasion’s overall
rate of spread accelerates if it proceeds from several nuclei
(i.e., points of origin) at a given time step. This phenomenon
can be portrayed by a two-tiered model of stratified diffu-
sion (Shigesada et al. 1995) that adds a distance-dependent
probability of creating new infection nuclei beyond the
main front of the standard diffusion spread. Other ap-

proaches represent the long-distance dispersal as a spreading
coalescing colony with a probability of creating new infec-
tion nuclei calculated as a function of the geographical dis-
tance from existing infestations (Sharov and Liebhold 1998).

Alternatively, a special group of "fat-tailed" probability
density functions provides an increased probability of long-
distance dispersal events and may be better able to simulate
rapidly moving invasions (Clark et al. 1998; Chapman et al.
2007). Fat-tailed dispersal kernels also better capture two bi-
ological aspects of dispersal — heterogeneous movement
(Skalski and Gilliam 2003) and habitat patchiness — which
cause invading organisms to potentially cover long distances
in search of new suitable locations (Morales 2002).

Although rare events of long-distance spread have been
widely recognized as key contributors to the rates of migra-
tion (Clark et al. 1998; Nathan 2003), they are notoriously
difficult to calibrate to real life outcomes (Andow et al.
1990; Shigesada and Kawasaki 1997, Higgins and Richard-
son 1999); the approaches described above offer only ap-
proximate solutions. A chief difficulty is that human
activities also contribute to long-distance migration, but do
not easily fit to "biological" models since they often de-
pend on a variety of socioeconomic factors (e.g., the nature
and extent of commercial or recreational opportunities at a
given location). One way of predicting human-mediated,
long-distance dispersal is through the use of "gravity" mod-
els (Bossenbroek et al. 2001). Gravity models relate the
strength of interactions between invaded and non-invaded
locations, weighted by the geographical distance between
them, in a manner similar to a gravity law (Bossenbroek et
al. 2001; Muirhead and MacIsaac 2005). These models as-
sume that the migration of invading organisms is not strictly
described by biological dispersal, but is biased by the "at-
tractiveness" of potential destinations. Attractiveness (which
denotes the degree of invasion potential) is usually based on
various spatial and statistical assumptions about economic
activities, infrastructure, and transportation routes (Muirhead
et al. 2006). Despite their simplicity, gravity models may ac-
tually have better accuracy in predicting human-vectored or-
ganisms than theoretical dispersal models (Bossenbroek et
al. 2001).

Establishment
This phase refers to the period during which an invading

organism grows and starts to reproduce in a recently colon-
ized location. An establishment phase also occurs after an
invasive species initially enters a region (see the section on
entry potential), but here we present it as a component of
spread in general. An invading organism requires certain re-
sources to establish a new population in new locales, most
obviously the presence of suitable hosts. Several studies
have demonstrated the effect of host distribution on species
spread rates (Turchin and Thoeny 1993; Durrett and Levin
1994; Shigesada and Kawasaki 1997; Weinberger 2002),
population growth (Jules et al. 2002), and severity of impact
of new invaders (Condeso and Meentemeyer 2007). Hoves-
tadt et al. (2001) suggested that greater habitat (i.e., host)
patch connectivity in invaded landscapes yields significant
declines in dispersal mortality through time when compared
with spatially homogeneous random landscapes. Kinezaki et
al. (2003) showed that the degree of habitat fragmentation
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changes an invader’s global rate of spread (depending on the
shape of the dispersal kernel used to characterize spread —
see Weinberger 2002).

Spatially explicit maps of host occurrence or, more pref-
erably, host abundance are required to successfully model
where an invader is likely to establish in a functionally het-
erogeneous environment. For non-indigenous species that in-
vade forested ecosystems, tree host species are typically of
primary interest (although for some invasive pathogens such
as Phytophthora ramorum, which causes sudden oak death,
the distributions of shrub hosts may also be important). In
North America, the distributions of tree species can be as-
certained from a number of sources, including digital ver-
sions of Little’s (Little 1971, 1976, 1977) tree range maps
for the USA and national forest inventory data for both the
USA (FIA, USDA Forest Service 2007) and Canada (Gillis
2001). For a wider range of species, a North American plant
distribution database is also available (McKenney 2007a).
National forest inventory data, generally collected on a net-
work of plots, may be spatially interpolated or linked with
medium-resolution satellite imagery (such as Landsat The-
matic Mapper) through spatial randomization techniques to
produce detailed, spatially continuous maps of tree species
composition (Lowe et al. 2003; McRoberts et al. 2006;
Yemshanov et al. 2009a). Figure 3 shows an example of a
host distribution map of pine species, Pinus spp., con-
structed using these methods and used in the model of S.
noctilio spread in eastern North America. It is also important
to consider that host susceptibility may vary with age and
stand conditions or between different host species (Paine
and Millar 2002; Smith et al. 2002; Solla et al. 2005). Such
cases can be managed in a spatially explicit model by link-
ing age- and (or) species-dependent susceptibility assump-
tions to corresponding spatial data sources (maps of host
resource) and thus adjusting the probability of successful in-
vasion at any geographic location for a given time step. As
with host species maps, maps of tree age and other stand at-
tributes can be developed from National Forest Inventory
data, however, this information usually has relatively poor
spatial precision and high error levels because of difficulties
in assessing and scaling up stand conditions and tree age
from field sample plot observations.

At very broad spatial scales, the establishment potential of
many non-indigenous species is ultimately constrained by
climate (Stephenson 1990; Pearson and Dawson 2003). By
identifying the climatic limits of an invading organism, un-
suitable locations can be removed from the modelling proc-
ess (see Fig. 4 for application to S. noctilio). Furthermore,
mapping the climatic range provides a relatively quick esti-
mate of the amount of land at risk; for this reason, such
maps are often produced early in the risk assessment process
to help guide initial response. Typically, generating such
maps requires information on where the invading organism
has historically been distributed (i.e., its presumed native
range as well as any areas it invaded previously). This may
be a very challenging prospect for some species and regions
and, in many cases, distribution models must be generated
from a handful of known occurrence locations. Fortunately,
a great variety of analytical techniques have been developed
for this purpose (see reviews in Elith et al. 2006; Kelly et al.
2007) and reasonable results can be obtained for most data-

sets. The climate data used in such analyses is readily avail-
able at both global (Hijmans et al. 2005) and continental
(North American) scales (Magarey et al. 2007; McKenney
2007b).

Economic impacts

Economic impact analyses for non-indigenous species that
attack plants often focus on direct losses in terms of reduced
agricultural yield or biomass supply (e.g., Leeuwen et al.
2001; Borchert et al. 2007) as well as corresponding mitiga-
tion costs (such as removal and replacement of trees killed
by the invading organism — see Sydnor et al. 2007). Cumu-
lative costs (such as mill closures and associated job losses)
and non-market costs (such as loss of biodiversity) are more
difficult to quantify (Leung et al. 2002; Keller et al. 2007).
Existing broad-scale estimates of the total annual costs of
non-indigenous species (e.g., US OTA 1993; Pimentel et al.
2001, 2005) raise awareness about the problem’s scope, but
do little to support more managerial responses.

Ultimately, more detailed economic analyses are neces-
sary to fully assess the costs and benefits associated with
various management strategies and identify those that are
most cost-effective (Perrings et al. 2000; Leung et al. 2005;
Cook et al. 2006). Decision makers have a number of op-
tions for control after an invading organism arrives in a
new locale, including eradication, containment (for example,
through regulations imposed on movement of potentially in-
fected materials), "slow-the-spread" efforts, and introduction
of biological control agents. In general, decision analyses for
non-indigenous species rely on the basic optimal resource
management concept (see Clark 1990), where the objective
is to maximize the discounted sum of social welfare pro-
vided by a biological resource (Nyarko and Olson 1991; Ol-
son and Roy 1996, 2002). Published studies have, for
example, estimated the costs and benefits of specific control
strategies (Cacho 2005; Cook et al. 2006), analyzed the
trade-offs between eradication and slow-the-spread programs
(Sharov and Liebhold 1998; Sharov et al. 1998), evaluated
the relative cost-effectiveness of control strategies targeted
towards particular life stages of an invading organism
(Buhle et al. 2005), and used conflict resolution analysis to
choose between alternative control strategies (Higgins et al.
1997). Notably, economic analyses regarding eradication
measures are rare, perhaps because many non-indigenous
species remain undetected until reasonably well established,
making eradication a failure-prone and prohibitively expen-
sive option (Born et al. 2005; Fraser et al. 2006).

Assessing the economic impact of imposing regulatory
policies is a more complex task, given that outbreaks usually
cover large areas with a mix of urban, rural, and natural set-
tings. While there have been some broad-scale, conceptual
analyses of the impacts of trade regulations on non-indige-
nous species introduction risk (e.g., McAusland and Costello
2004; Cook and Fraser 2008), there have been few specific
case studies that have considered regulatory efforts at least
in part. Noteworthy examples include a comparison of the
costs for different strategies for preventing a potential
Chrysomya bezziana Villeneuve outbreak in Australia
(Anaman et al. 1994), costs of eradication of aquatic species
(Cacho 2005), costs of eradication of Karnal bunt in Aus-
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tralia (Wittwer et al. 2005), damages from the zebra mussel
in North America (Khalanski 1997), and the costs of preven-
tion and control policies (Leung et al. 2002). Similarly, few
studies have assessed the costs of biological control pro-
grams (see review in Hill and Greathead 2000). The results
include cost-benefit ratios that vary by three orders of mag-
nitude. Programs with the highest cost-benefit ratios usually
cover large geographic areas and target economically impor-
tant species (Hill and Greathead 2000).

The reason for this wide variation in program costs is the
tremendous uncertainty in the structure of the aggregate
costs of invasion, in turn eroding confidence in predictive
model results. In response to this problem several formal
economic frameworks for risk management have been pro-
posed. These use a variety of methods, including risk-based
models (Shogren 2000), stochastic dynamic programming
(Eiswerth and van Kooten 2002), and hierarchical Bayesian
statistics (Rinella and Luschei 2007). These prediction-based
techniques relying on expected utility maximization are of
limited value when no information exists on which to base
either invasion scenarios or their probabilities of occurrence.
In such circumstances alternative policy decision rules have
been devised, such as the minimax criterion where policies
are formed to minimize social losses in a worst-case sce-

nario (Moffitt and Osteen 2006). Essentially the worst-case
scenario is based on Wald’s maximum model of uncertainty
(Wald 1945) that uses the worst-case outcomes as a hedge
against severe uncertainty in model assumptions and data.
More sophisticated decision rules are presented in Horan et
al. (2002) and Moffitt et al. (2006).

The uncertainty surrounding non-indigenous species
makes contingency planning difficult, thus creating great de-
mand for ex ante impact assessments (Perrings et al. 2000;
Raghu et al. 2007). It is a challenge to execute detailed eco-
nomic impact analyses for large-scale heterogeneous envi-
ronments, since blanket policies for non-indigenous species
may have quite different consequences in different locales
(Leung et al. 2002). Often when very little is known about
a new invader, an impact assessment may simply identify
the gross potential amount of host resource under threat and
multiply this quantity by some unit price (Borchert et al.
2007). This technique is very popular in impact assessments
of exotic forest pests; however it does not address important
issues such as when and where invasion-induced wood sup-
ply shortages might occur or equating the marginal benefits
of management decisions with the marginal costs as would
be the case in a more economically oriented approach (Fox
et al. 1997). The latter is a more complex problem and re-

Fig. 3. Distribution and abundance of three species of Pinus that act as hosts for Sirex noctilio. Abundance estimates were obtained by
linking coarse-scale national forest inventory data with medium-resolution satellite imagery through a spatial randomization technique. The
brown lines indicate Little’s (Little 1971) range map for each species.
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quires linking the invasion model with the use and manage-
ment of forest resources. Impact assessments on commercial
wood supply must also account for existing forest manage-
ment practices and regulatory guidelines that may be re-
stricted to certain administrative and political boundaries.

When implemented in a spatial setting, integrated models
can or should recreate the heterogeneous nature of natural
landscapes, host distribution and pathways of introduction
and spread of invading organisms hence offering a more ac-
curate representation of potential damages to a host resource
(and thus a more accurate representation of economic im-
pacts). Furthermore, the approach can be linked with exist-
ing forest management models such as harvest and wood
supply allocation programs (Weintraub and Navon 1976;
Bettinger et al. 2002; Peter and Nelson 2005) hence better
representing the dynamic nature of major forest management
activities. For example, Yemshanov et al. (2009a) provided
geographically referenced depictions of the potential impacts
of the S. noctilio invasion to wood supply markets in eastern
Canada. By integrating the spread model with a harvest allo-
cation model, they identified major areas of potential wood
supply shortages, associated direct economic losses and ef-
fectiveness of potential harvest adaptation policies. The

Fig. 4. Climatic suitability map for Sirex noctilio showing the occurrence probability (P(occurrence)) based on a maximum entropy interpola-
tion (Phillips et al. 2006) of the worldwide S. noctilio occurrence data shown in Carnegie et al. (2006). The climate variables used in the
model included: annual mean temperature, average minimum temperature of the coldest month, average maximum temperature of the hot-
test month, annual precipitation, precipitation of the coldest month, and precipitation of the hottest month.

Fig. 5. Major components of the integrated modelling approach.
Feedbacks are shown with dashed lines. Management initiatives can
be applied at various points in the invasion process and may in-
clude activities such as: (a) salvage logging; (b) slow-the-spread
programs; and (c) increased surveillance at points of entry.
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study suggested that adaptation policies could decrease
short-term losses by 46%–55% and help delay larger wood
supply failures by up to 9–11 years.

Benefits of integration

Given the potentially significant economic ramifications,
any decision about managing non-indigenous species should
be based on the best available biological and ecological
knowledge about the invading organism (Fox et al. 1997).
We suggest that this objective can be better addressed by
combining biophysical and economic components into a sin-
gle integrated modelling framework. A unique characteristic
of an integrated "bioeconomic" approach is the ability to in-
corporate feedbacks between the biophysical, economic, and
policy components of one model (Finnoff et al. 2005). For
example, the "biological" model components generate spread
projections of an invading organism and its impact on a host
resource. Impact caused by host mortality subsequently af-
fects the future spread potential of an invading organism.
The "economic" modules then use these outputs for real-
time tracking of the damage costs and impacts on "business-
as-usual" activities. In turn, economic outcomes and various
mitigation strategies (such as quarantine or slow-the-spread
protocols) can be linked back to the biophysical components
to evaluate their real costs and effectiveness (Fig. 5).

The integrated modelling approach has a number of other
advantages. First, integrating the model in a spatial setting
offers the capacity of representing actual geographic varia-
tion of key biophysical and economic drivers. In fact, entry

and spread are spatial processes per se and thus fit naturally
into a geographic framework. Spread, risk, and impact esti-
mates can be generated at broad spatial scales with adequate
accuracy to outline geographic hotspots while still providing
a larger context for the problem (see Fig. 6a for example).
Second, integrated models may better estimate the cumula-
tive impacts and spatial dependencies that might occur as a
result of multiple introductions. This becomes especially
valuable for assessing complex situations, including both
the existing and potential infestations scattered across large
and diverse geographical regions (Rafoss 2003; Yemshanov
et al. 2009b). Third, sensitivity analyses can be employed to
help reveal the relative importance of key features of the in-
vading organism (e.g., entry potential, population growth
rate, dispersal distances or host susceptibility) and their im-
pact on particular model outputs (Neubert and Caswell
2000; Watkinson et al. 2000). Sensitivity analyses also help
identify key drivers behind the invasion and potential
knowledge gaps, which may lead to insights on how to con-
trol or eradicate the species (Watkinson et al. 2000). This is
an important point as many invasive species have no prior
observations in North America, making their risk potential
highly uncertain.

Finally, a stochastic implementation offers a way to esti-
mate the uncertainty of invasion in a manner useful to deci-
sion makers. While widely acknowledged as a problem,
uncertainty can be a challenge to quantify, especially for
geographically explicit analyses. As a result, uncertainties
are often omitted from risk modelling efforts, so outputs
convey more confidence than actually exists (Woodbury

Fig. 6. Risk and uncertainty maps, (Sirex noctilio, 30-year time horizon) showing: (a) probability of invasion, P(invasion); and (b) relative
uncertainty of P(invasion) (shown here as a binary entropy metric). A technical description of the risk mapping methodology can be found in
Yemshanov et al. (2009b).
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2003; Meentemeyer et al. 2004; FHTET 2007). Integrated
models provide means of identifying and discriminating par-
ticular sources of uncertainty (such as natural variability or
input data errors; Regan et al. 2002; Elith et al. 2002). For
example, multiple stochastic model replications can be used
to build probabilistic maps of invasion risks and uncertain-
ties for a given time horizon and region of interest (Yem-
shanov et al. 2009b; Fig. 6b). A simple classification of the
risks and uncertainties combined in a single map (Fig. 7)
can then serve as a practical guide for decision makers.

In fact, several general techniques have been proposed to
quantify uncertainties, with sensitivity analysis among the
most widely used (Morgan and Henrion 1990). Sensitivity
analysis involves systematic alteration of model parameter
(or input) values to observe their relative effects on a target
output variable (Swartzman and Kaluzny 1987; Walley
1991; Henderson-Sellers and Henderson-Sellers 1996), and
usually quantifies uncertainty using a standard probability
model. Ensemble prediction systems (Worner and Gevrey
2006; Demeritt et al. 2007) that combine the forecasts made
with different models represent another alternative, address-
ing, at least in part, uncertainty due to model structure or
formulation (Buizza et al. 2005, Araújo and New 2007).
Several other approaches attempted to solve the issue of un-
certainties through multi-criteria decision analysis and valu-
ation (Keeney and Raiffa 1976; von Winterfeldt and
Edwards 1986; Stewart 1992). The general idea of these ef-

forts is to translate vague objectives into more precise per-
formance indicators.

Although there are many advantages to the integrated ap-
proach, there are of course several potential drawbacks.
Gathering the volume of information needed to model the
entire invasion process — complete with economic impacts
and management scenarios — can be daunting and may be
beyond the scope of many research programs. Furthermore,
the large number of inputs means there are also many op-
portunities for error; by combining the models for each inva-
sion component, errors may get multiplied, making the final
outputs highly prone to error. There is no simple solution to
this situation, model outputs will only be as good as the data
that goes into the model and thus it is essential that each
component of an integrated model is parameterized as accu-
rately as possible. A final consideration is that of validating
the results from an integrated modelling effort. Finding in-
dependent validation data for current invasive threats is ex-
tremely challenging since the invasion process is often in a
relatively early stage of advance, and any spatial occurrence
data that is available is often used in model development.
Furthermore, such models are often oriented around assess-
ing potential as opposed to actual outcomes; this makes
model validation problematic and somewhat irrelevant.
Nevertheless, one possible approach could be to model the
potential spread of a long-established invasive species and
then test model predictions against actual spread data ob-
tained from historical occurrence records for that species
(see Higgins et al. 2001). Though this method can only be
used for invasive species with a long history in an area, pos-
itive results should lend confidence to model predictions for
more contemporary invasive threats.

Concluding comments
Non-indigenous species can be major economic and bio-

logical threats and they remain a major challenge for deci-
sion makers. Often, generating defensible assumptions about
how an invading organism will behave in a new environ-
ment is extremely difficult, thus decisions have to be made
under tenuous assumptions based on little a priori knowl-
edge. Integrated bioeconomic models offer a particularly
promising approach for assessing aggregate risks of non-
indigenous species.

Our review indicates that there is a growing base of theo-
retical knowledge and data to support practical integrated
modelling initiatives for non-indigenous species. Entry po-
tential can be modelled using marine import data to define
global and port-specific probabilities of entry. Spread mod-
els can incorporate both well-defined spread dynamics equa-
tions and expert knowledge into estimates of population
growth, dispersal, and establishment of invading organisms.
Outputs, in terms of host resource losses, can then be as-
sessed for economic value and mitigation options using
standard cost-benefit analyses but in a context that should
be more useful to practical decision-makers.

Integrated risk assessments will benefit from further work
in a number of areas. Basic information, such as host distri-
bution and abundance, can be very difficult to obtain for
many species and locations. Similarly, reliable information
on the distribution of non-indigenous species in their coun-

Fig. 7. Risk–uncertainty map for Sirex noctilio based on a 30-year
time horizon with risk–uncertainty classes shown in the legend (R =
risk, U = uncertainty). A technical description of the risk–
uncertainty classification can be found in Yemshanov et al.
(2009b).
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try of origin is usually scarce, making it difficult to define
the climatic tolerances of an invading species. Ongoing data
collection will also be needed to generate species-specific
spread parameters and to better understand the phenomenon
of rare, long-distance dispersal events. Despite these limita-
tions, our experience suggests that the data and knowledge
are increasingly in place to generate informative, testable in-
tegrated risk assessments for many non-indigenous species.
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tion of biological invasions – a survey. Ecol. Econ. 55(3): 321–
336. doi:10.1016/j.ecolecon.2005.08.014.

Bossenbroek, J.M., Kraft, C.E., and Nekola, J.C. 2001. Prediction
of long-distance dispersal using gravity models: zebra mussel in-
vasion of inland lakes. Ecol. Appl. 11(6): 1778–1788. doi:10.
1890/1051-0761(2001)011[1778:POLDDU]2.0.CO;2.

Brockerhoff, E.G., Bain, J., Kimberley, M., and Knı́žek, M. 2006.
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