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Abstract

The use of alternative hosts imposes divergent selection pressures on parasitoid

populations. In response to selective pressures, these populations may follow dif-

ferent evolutionary trajectories. Divergent natural selection could promote local

host adaptation in populations, translating into direct benefits for biological con-

trol, thereby increasing their effectiveness on the target host. Alternatively, adap-

tive phenotypic plasticity could be favored over local adaptation in temporal and

spatially heterogeneous environments. We investigated the existence of local host

adaptation in Aphidius ervi, an important biological control agent, by examining

different traits related to infectivity (preference) and virulence (a proxy of para-

sitoid fitness) on different aphid-host species. The results showed significant dif-

ferences in parasitoid infectivity on their natal host compared with the non-natal

hosts. However, parasitoids showed a similar high fitness on both natal and non-

natal hosts, thus supporting a lack of host adaptation in these introduced parasit-

oid populations. Our results highlight the role of phenotypic plasticity in fitness-

related traits of parasitoids, enabling them to maximize fitness on alternative

hosts. This could be used to increase the effectiveness of biological control. In

addition, A. ervi females showed significant differences in infectivity and viru-

lence across the tested host range, thus suggesting a possible host phylogeny effect

for those traits.

Introduction

Agricultural intensification under the current food produc-

tion scenario is causing novel ecological and evolutionary

changes in agroecosystems globally, mainly through the

escalation of biotic interactions and the introduction of

new pest species (Zimmerer 2010; Thrall et al. 2011). Tra-

ditionally, pest management has been largely based on the

intensified use of chemical control. However, the use of

insecticides has triggered several undesired effects including

the continued evolution of insecticide resistance, the bioac-

cumulation of pesticides at different trophical levels, and

the inherent risk to human health, among others (van

Lenteren 2000; Bale et al. 2008). Hence, current efforts in

pest management are aimed to reduce the environmental

risks and to increase the efficiency of resource-use in agri-

culture (Thrall et al. 2011). In this context, eco-evolution-

ary research on biological control agents is important to

understand how to increase the efficacy and safety of bio-

logical pest control (Hufbauer and Roderick 2005; Bale

et al. 2008; Henry et al. 2010; Vorsino et al. 2012).

During the past 120 years, more than 5000 biological

introductions of approximately 2000 different species of

natural enemies of arthropods have been carried out to

control the population density of pest species (i.e., classical

biological control) (Roderick and Navajas 2003; van Lent-

eren et al. 2006a; Cock et al. 2010). However, only 16% of

all those introductions have established and resulted in the

successful control of the target pest (Caltagirone and Doutt

1989; Bellows 2001; Roderick and Navajas 2003; Grandgir-

ard et al. 2006). This low success rate of man-made intro-

ductions of biological controllers has been explained, in

part, as the result of (i) the introduction of agents poorly

adapted to local environmental conditions, (ii) the evolu-
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tion of nontarget interactions with new hosts and other

guild interactions such as competition and intraguild pre-

dation (Messing et al. 2006; Gariepy and Messing 2012),

and (iii) the persistence of undesirable or maladaptive traits

in the introduced populations of natural enemies

(Hufbauer 2002; Thrall et al. 2011). The latter is a direct

consequence of the low number of propagules (i.e., founder

effect) and the genetic bottlenecks during the introduction

process of a control agent. Indeed, during the introduction

of natural enemies, the adaptive genetic variation could be

randomly reduced, thus limiting the adaptive responses of

the new populations and thereby decreasing the

performance on their target hosts (Hufbauer et al. 2004a;

Hufbauer and Roderick 2005; Vorsino et al. 2012). Never-

theless, the implications of the adaptive potential of the

natural enemy populations selected for introduction and

the recent coevolutionary history between the natural ene-

mies and their host species have been typically ignored by

pest control strategies in general (including classical biolog-

ical control) (Henry et al. 2010). In fact, there is a lack of

empirical evidence on the significance of the evolutionary

and adaptive processes underpinning the success of biologi-

cal control, which appears particularly evident with control

agents that are mass-reared before being released into agri-

cultural systems (Roderick and Navajas 2003; Henry et al.

2010; Vorsino et al. 2012).

Parasitoid Hymenoptera are highly specialized natural

enemies commonly used as biocontrol agents in agro-eco-

systems (Godfray 1994). Although the mechanisms

involved in the adaptive evolution of parasitoid popula-

tions are still poorly understood, some authors have sug-

gested that the main factor contributing to the divergence

and specialization of parasitoid populations could be the

close relationship they establish with their insect hosts, rep-

resenting a potential for divergent selection of parasitoid

populations using different hosts (Stireman et al. 2006;

Abrahamson and Blair 2008; Feder and Forbes 2010). The

evolution of highly adaptive races to their host plants (e.g.,

host race formation and ecological speciation in insects)

has been well studied in herbivorous insects (Dr�es and Mal-

let 2002; Funk 2010). This kind of adaptive evolution is

also expected to occur in insect parasitoids. Whenever par-

asitoid populations use different environments, divergent

natural selection could promote local adaptation in differ-

ent populations, conferring greater fitness on their natal

environment compared to other non-natal environments

(Kawecki and Ebert 2004). Furthermore, in parasitoids, dif-

ferent hosts can act as divergent selection agents, which

could differentially affect behavioral traits associated with

host selection (i.e., infectivity in parasitoids), as well as

physiological incompatibilities associated with the suscepti-

bility of the hosts (i.e., virulence in parasitoids), thus

resulting in adaptations to a certain host (Mackauer et al.

1996; Antolin et al. 2006). Different experimental evolu-

tionary studies have demonstrated the existence of the

highly adaptive potential of parasitoid populations (Henry

et al. 2008; Dion et al. 2011). Host-associated genetic dif-

ferentiation in natural populations of parasitoids has sup-

ported the hypothesis of ‘sequential radiation’ raised by

Abrahamson and Blair (2008). This hypothesis proposes

that the diversification of herbivorous insects through the

adaptation to new host plants and the formation of ecolog-

ical races (i.e., host races) represents new resources avail-

able for the parasitoids associated with those herbivorous

races, which in turn promote the adaptation and diversifi-

cation of parasitoid populations (Stireman et al. 2006; For-

bes et al. 2009). Therefore, understanding the evolutionary

mechanisms underpinning host adaptation in parasitoid

populations could improve current strategies for biological

control. For instance, finding preadapted biological control

agents for the target hosts in their native range could imply

an increased chance that this parasitoid population would

become established on a certain target pest. This would fos-

ter greater efficiency in host location and the ability to

overcome host resistance, resulting in higher rates of popu-

lation increase (Hufbauer and Roderick 2005). However,

host adaptation could also involve a cost associated with

reducing the phenotypic plasticity of parasitoid popula-

tions, when the preferred host is rare or not available and

then populations may be maladapted to the current host

(Hufbauer 2002; Antolin et al. 2006). Alternatively, pheno-

typic plasticity may dampen the effects of selection regimes

(different hosts) by allowing individuals to adapt to alter-

nate hosts (Crispo 2008). Adaptive plasticity reduces the

effective magnitude of environmental shifts, facilitating

population persistence (Chevin and Lande 2009) and

thereby increasing ecological resilience at a regional scale

(Lalibert�e and Tylianakis 2010).

The parasitoid Aphidius ervi (Haliday) (Hymenoptera:

Braconidae; Aphidiinae) is commonly used in biological

control in agriculture and possibly one of the best-studied

parasitoid model systems in ecology and evolution (Henry

et al. 2010). This endoparasitoid is a solitary koinobiont

that parasitizes several Macrosiphinae species in their

source region (Eurasia) (Star�y et al. 1993). In Europe,

A. ervi is frequently recorded on legume aphids, such as the

pea aphid Acyrthosiphon pisum (Harris) (Tomanovic et al.

2009). When introduced in North America, the host diver-

sity of A. ervi was presumably more restricted (Bilodeau

et al. 2013). In Chile (South America), A. ervi was intro-

duced about 35 years ago from France, as part of a classical

biological control program of the grain aphid Sitobion ave-

nae (Fabricius), one of the most important cereal pests in

Chile (Zu~niga et al. 1986a). At present, A. ervi has proven

to be highly efficient in controlling aphids on legume and

cereal crops and even becoming the most common parasit-
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oid of S. avenae (up to 75% in the field) (Gerding and Fig-

ueroa 1989; Gerding et al. 1989; Zu~niga 1990; Star�y et al.

1993, 1994). Interestingly, this latter situation is not com-

monly observed in Europe, where other species have a

greater relevance than A. ervi in controlling cereal aphids

(Cameron et al. 1984; Kos et al. 2009).

Consequently, the aim of this study was to investigate

the adaptation of introduced populations of the parasitoid

A. ervi to different aphid hosts in Chile. In order to deter-

mine local host adaptation, we tested the hypothesis that

each parasitoid population had a higher fitness on its own

host (natal host) than on other non-natal aphid hosts. For

this, we conducted reciprocal transplant experiments and

studied different traits associated with the infectivity and

virulence (fitness-related traits) of different host-associated

parasitoid populations across different aphid hosts.

Materials and methods

Parasitoids and aphids

Aphids were collected from fields of legumes and cereals in

two different geographic zones in Chile: Region del Maule

(S 35°24′, W 71°40′) and Region de Los Rios (S 39°51′, W
73°7′). Parasitoid individuals were obtained by collecting

and rearing aphids from the field. This method allowed an

accurate determination of the aphid species from which

parasitoid individuals were obtained. The pea aphid Acyr-

thosiphon pisum complex was separately studied including

the two different host races present in Chile (Peccoud et al.

2008). The alfalfa race of A. pisum (APA) was sampled on

alfalfa fields (Medicago sativa L.) and the pea race (APP) on

pea orchards (Pisum sativum L.). Furthermore, the cereal

aphids studied included the grain aphid Sitobion avenae

(SA) and the bird cherry-oat aphid Rhopalosiphum padi

(L.) (RP), both sampled on wheat (Triticum aestivum L.)

and oat (Avena sativa L.) fields.

All aphids were reared under controlled laboratory con-

ditions on the same host plant species from which they

were collected in the field, which allowed the continued

reproduction of aphids and parasitoids (20°C, 50–60 RH,

D16/N8 of photoperiod). Aphids were kept until the

appearance of mummies (i.e., aphid exoskeletons contain-

ing the parasitoid pupae) and later emergence of parasi-

toids occurred. Each parasitoid individual that emerged

from a collected mummy was determined using a taxo-

nomic key described by Star�y (1995). All A. ervi individu-

als were reared on the same host aphid species from

which they emerged (natal host) in the laboratory. Thus,

four different A. ervi populations were established: (i) A.

ervi population from A. pisum-alfalfa race; (ii) A. ervi pop-

ulation from A. pisum-pea race; (iii) A. ervi population

from S. avenae; and (iv) A. ervi population from R. padi.

In order to limit the loss of genetic diversity as a conse-

quence of genetic drift, all rearing populations (i.e., from

which experimental parasitoid individuals were obtained)

comprised a high number of parasitoid individuals col-

lected in the field (>300 individuals). Only the first six

parasitoid generations were used for further performance

experiments. Female experimental parasitoids were

obtained as mummies from rearing colonies, then trans-

ferred to a plastic box (10 9 20 9 15 cm) before emer-

gence, supplied with water, and diluted honey (10%) for

feeding and male parasitoids for mating. Female parasi-

toids up to 2 days of age were used in the experiments.

Since endosymbiotic bacteria such as Hamiltonella defensa

have been shown to confer resistance to A. ervi parasitism

in the A. pisum aphid (Oliver et al. 2010), only aphid

clones free of most common secondary bacteria described

for aphids (Spiroplasma spp., Serratia symbiotica, Regiella

insecticola, Rickettsia spp. y Hamiltonella defensa) were

used for maintenance and experimentation. The detection

of secondary bacteria in aphids was carried out by PCR of

a 16S rDNA mitochondrial region (see Tsuchida et al.

2002 for further details), using the primary endosymbiont

of aphids, Buchnera aphidicola, as a positive control (Oli-

ver et al. 2010).

Reciprocal transplant experiments

To study the response of parasitoids to different selection

agents (different host aphid species), a reciprocal transplant

experiment was conducted to determine the infectivity and

virulence of parasitoid females to their natal hosts (i.e., the

aphid species on which parasitoids were collected in the

field) and non-natal hosts. This type of experiment has

proven to be useful in the detection of adaptive patterns,

studying the mean fitness shown by a set of populations or

demes through a set of experimental habitats, and allowing

the direct testing of the role of a particular environmental

factor as a divergent selection agent (Kawecki and Ebert

2004).

Parasitoid infectivity

Parasitoid infectivity was described through the recording

of a suit of behaviors. Previous observations and published

studies (Wang and Keller 2002; Araj et al. 2011) were

revised to choose relevant behavioral traits of the parasitoid

females. The following behaviors were considered for anal-

yses:

1 Sting, the insertion of the female ovipositor into the

host’s body, characterized by the curving of the abdomen

in a forward position between the third pair of legs;

2 Attack, similar to sting but with no successful insertion

of the ovipositor into host’s body;
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3 Walking, a persistent walking movement all over the

experimental arena.

Infectivity experiments were carried out on four aphid

hosts (APA, APP, SA, and RP) testing all four parasitoid

populations. Experimental arena consisted of a modified

glass Petri dish (2 cm. diameter) containing one aphid

nymph of the second to third instar of each aphid host

onto a small piece of leaf (from the host plant where each

aphid species was reared). Second to third instars were cho-

sen as they perform less defensive behaviors (e.g., kicking)

and represent a high-quality resource for A. ervi, being nor-

mally preferred over other nymphal stages (Henry et al.

2008). After 5 min of settling of the aphid on the leaf, one

single-mated naive female parasitoid per assay was placed

inside the experimental arena and behaviors were recorded

during 10 min. Female parasitoids were used only once.

Behavioral observations were done under an Optika ST-

155 (109) compound microscope with a diffuse cold light

source under the experimental arena. Each test combina-

tion (parasitoid population X aphid host = 16 combina-

tions) was repeated at least 10 times, renewing the

experimental arena for every new test (Petri dish, plant,

aphid, and test parasitoid). The proportion of time spent

for each of the three behavioral traits was estimated, as well

as the frequency of sting and attack and the time to first

‘sting’ and ‘attack’ using software ETHOLOG v.2.2.5 (Ottoni

2000). To increase accuracy, all tests were recorded with a

high-resolution video camera (C-mount SZNCTV1/2).

Parasitoid virulence

Virulence experiments were carried out on the four aphid

hosts, but only three parasitoid populations (APA, APP,

and SA) were tested, because R. padi proved to be a low-

quality host for A. ervi (see results and discussion). A total

of 300 female parasitoids were assayed (25 replicate for

each treatment). Each assay was conducted in an experi-

mental arena (5-cm-diameter glass Petri dish), containing

ten nymphs from second to third instars. Subsequently, a

single previously mated, naive female parasitoid was placed

into the experimental arena (each female was used only

once) and observed until the female parasitoid made a suc-

cessful oviposition in each aphid (i.e., female parasitoid

inserting ovipositor for a period longer than 5s; Desneux

et al. 2009). After each successful oviposition, stung aphid

nymphs were removed from the experimental arena, trans-

ferred to their host plant, and confined to a clip cage

(Noble 1958). The experiment ended after 10 min or after

ten aphid nymphs were stung. For the following ten days,

the number of mummies formed was recorded and the

number and sex of the emerging parasitoids was registered.

For virulence, parasitism rate, survival of progeny, and pro-

ductivity (i.e., product of the fecundity and survival of par-

asitoids) were recorded. Developmental time and the sex

ratio of the progeny were also estimated as proxies of para-

sitoid fitness. In hymenopteran parasitoids, the sex ratio is

under direct behavioral control of the parasitoid females,

being an indicator of adaptive host selection, where fertil-

ized eggs could be preferentially allocated to higher quality

hosts (Charnov et al. 1981; Godfray 1994). The parasitism

rate was estimated as the mean number of parasitized

aphids (number of mummies produced from stung

nymphs), divided by the total number of aphid survivors

plus the number of mummies formed (Antolin et al. 2006).

The survival of the progeny was estimated as the mean pro-

portion of parasitoids which emerged from mummies

formed (number of parasitoids emerged/number of mum-

mies formed) (Henry et al. 2010). Productivity was esti-

mated as the mean number of parasitoids that emerged

from stung aphids (number of mummies formed plus

aphid survivors) (Antolin et al. 2006; Dion et al. 2011).

Productivity is considered a good measure of parasitoid

virulence given that it includes both fecundity (parasitism

rate) and survival of the parasitoid progeny, and thus, it

becomes a good proxy of parasitoid fitness (Roitberg et al.

2001; Antolin et al. 2006). Developmental time was esti-

mated as the time from oviposition to the emergence of an

adult parasitoid. The sex ratio was calculated as the propor-

tion of males present in the progeny of a single female par-

asitoid in each assay.

Statistical analysis

Significant differences in infectivity between natal and non-

natal hosts (four levels) were analyzed for each parasitoid

population utilizing generalized linear mixed models

(GLMMs) (Bolker et al. 2009). The proportion of time

spent for the relevant behaviors was analyzed assuming a

binomial error and a logit-link function for proportional

data. The frequency of attack and sting was analyzed using a

Poisson error and a log-link function for frequency data,

whereas the time to the first ‘sting’ and ‘attack’ was com-

pared for each parasitoid population tested using survival

analyses (Kaplan-Meier estimates) (Hosmer and Lemeshow

1999), with the survival packages (Therneau 1999; Fox and

Carvalho 2012) implemented in R Commander (Fox 2005).

The effect of the assayed hosts (four levels) and the parasit-

oid population (three levels) (fixed factors), as well the

interaction between these two independent variables on

each dependent variable (virulence), was analyzed using

generalized linear mixed models (GLMMs). The dependent

variables: parasitism rate, survival of progeny, productivity,

and sex ratio were analyzed assuming a binomial error and a

logit-link function. The developmental time was analyzed
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using a Poisson error and a log-link function. The random

factors included in the GLMMs corresponded to a temporal

block (twenty-six levels) and the generation of parasitoids

assayed (six levels). However, as the generation factor did

not show any variation within the models as random factors,

they were therefore not included in the final analysis. All

GLMMs were conducted using lme4 package (Bates et al.

2010) in R 2.15.1 (R Development Core Team 2008). In

addition, the GLMMs with overdispersion were analyzed by

fitting the model, including a random factor at the individ-

ual level (Elston et al. 2001; Browne et al. 2005). The differ-

ent models were compared using the Akaike criterion and

performing an ANOVA in the car package (Fox et al. 2009).

Pairwise comparisons were developed using ‘Tukey’ tests,

correcting for multiple comparisons by the ‘single-step’

method usingMultcomp package (Hothorn et al. 2008).

Results

Infectivity on natal and non-natal hosts

Variation of infectivity was measured by the observation of

a set of behaviors carried out by female parasitoids when

different aphid hosts were offered. The two most important

and relevant behaviors were attack and sting.

Attack behavior

The variables frequency and proportion of time spent

attacking showed a significant effect for the assayed host in

the parasitoid populations from the A. pisum-alfalfa race, S.

avenae and R. padi, with no significant differences for the

parasitoids from the A. pisum-pea race (Table 1). The A.

pisum-alfalfa parasitoid population showed a high fre-

quency and proportion of time spent attacking on their

natal host, when compared to other non-natal hosts. How-

ever, this was only statistically significant compared to

when S. avenae and R. padi were offered as hosts (Figs 1

and 2). In contrast, R. padi-originated populations had

lower values for the natal when compared to other non-

natal hosts tested. Significant differences were also found

for the time to the first attack for the parasitoid population

from the A. pisum-pea race (Likelihood ratio test = 9.11,

P = 0.028; logrank test = 9.97, P = 0.018; df = 3) and for

the S. avenae population (Likelihood ratio test = 8.57,

P = 0.035; logrank test = 9.11, P = 0.028; df = 3)

(Table 2). Contrastingly, no significant differences for the

time to the first attack of hosts was found for the A. pisum-

alfalfa race parasitoid population (Likelihood ratio

test = 4.7, P = 0.195; logrank test = 5.04, P = 0.169;

df = 3) nor for the R. padi-originated parasitoid popula-

tion (Likelihood ratio test = 5.97, P = 0.113; logrank

test = 6.33, P = 0.096; df = 3) (Table 2).

Sting behavior

A significant effect of the frequency and proportion of time

spent stinging was observed for the A. pisum-alfalfa race

and S. avenae-originated parasitoid populations tested on

the assayed hosts (Table 1). Both populations showed a

higher mean proportion of time of stinging on their natal

host compared to all non-natal hosts. However, only par-

asitoids from S. avenae showed a high frequency of sting

on their natal host compared with all non-natal hosts

(Figs 3 and 4). Significant differences were also observed

for the time to the first sting on the assayed hosts for three

of the four parasitoid populations studied (APA, APP, and

SA), being quicker on their natal hosts. No significant dif-

ferences were observed for the time to first sting for the R.

padi-originated parasitoid population between the assayed

hosts (Table 2); (APA parasitoid population: Likelihood

ratio test = 16.76, P = 0.0007; logrank test = 13.99,

P = 0.002; df = 3); (APP parasitoid population: Likelihood

ratio test = 20.07, P = 0.0001; logrank test = 16.43,

P < 0.001; df = 3); (SA parasitoid population: Likelihood

ratio test = 12.57, P < 0.01; logrank test = 15.77,

P < 0.01; df = 3); (RP parasitoid population: Likelihood

ratio test = 4.27, P = 0.234; logrank test = 4.15,

P = 0.245; df = 3) (Table 2).

Table 1. Generalized linear mixed models performed for each behavioral variable tested on hosts coming from different parasitoid populations.

Models

Parasitoid population

Acyrthosiphon pisum-alfalfa race Acyrthosiphon pisum-pea race Sitobion avenae Rhopalosiphum padi

df v2 P-value df v2 P-value df v2 P-value df v2 P-value

Proportion of time spent

Attack 3 19.55 <0.0001 3 5.88 0.1172 3 12.72 0.0052 3 9.45 0.0238

Sting 3 26.11 <0.0001 3 3.71 0.2944 3 31.64 <0.0001 3 7.54 0.0562

Walking 3 8.15 0.0428 3 1.59 0.6606 3 3.731 0.292 3 4.60 0.2033

Frequency

Attack 3 25.89 <0.0001 3 6.57 0.0868 3 10.41 0.0154 3 10.64 0.0137

Sting 3 22.01 <0.0001 3 1.61 0.656 3 33.10 <0.0001 3 5.58 0.1334
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Walking behavior

The proportion of time spent walking on hosts showed sig-

nificant differences only for the A. pisum-alfalfa race-origi-

nated parasitoid population (Table 1), when R. padi was

offered as a host they spent significantly more time walking

around the experimental arena, compared to the natal host

(Fig. 5). The remaining parasitoid populations studied here

(APP, SA, and RP) did not show any significant difference

among any of the tested hosts (Fig. 5).

Virulence to natal and non-natal hosts

Parasitism rates

The parasitism rate was studied through quantifying the

mean number of mummies formed from the stung nymphs

(Fig. 6). A significant effect of the assayed host was

observed (GLMM: assay hosts, v2 = 46.29, df = 3,

P < 0.001). This effect was caused by the very low parasit-

ism rate observed on the R. padi host (0.24 � 0.08: mean

parasitism rate � standard error), compared with a high

parasitism rate observed on the A. pisum-alfalfa race

(0.83 � 0.03), the A. pisum-pea race (0.81 � 0.03), and S.

avenae (0.77 � 0.03). Additionally, and due to these out-

comes, it was not possible to analyze survival, productivity,

sex ratio, or the developmental time of R. padi aphids as

hosts. No significant effects in parasitism rates for the para-

sitoid population factor were found (GLMM: parasitoid

population, v2 = 2.04, df = 2, P = 0.3613). Nor were they

found for the interaction between factors (GLMM: assay

hosts x parasitoid population, v2 = 9.81, df = 6,

P = 0.1331).

Survival of the progeny

The survival of the progeny was studied as the mean pro-

portion of parasitoids emerged from the formed mummies.

(A) (B)

(C) (D)

Figure 1 Mean frequency of attack of each parasitoid population on natal host (dark bars) and on non-natal hosts (light bars) (Mean � SE). Different

letters indicate significant differences expressed per parasitoid population assayed on the four hosts tested; Acyrthosiphon pisum-pea race (APP), A-

cyrthosiphon pisum-alfalfa race (APA), Sitobion avenae (SA), and Rhopalosiphum padi (RP). Figure: Parasitoid collected from (A) A. pisum-pea race;

(B) A. pisum-alfalfa race; (C) S. avenae and (D) R. padi.
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No significant effect was found on the mean survival of the

parasitoid progeny for the parasitoid population (GLMM:

parasitoid population, v2 = 2.83, df= 2, P = 0.2427), the

assayed host (GLMM: assay hosts, v2 = 0.42, df = 2,

P = 0.8121), or for the interaction between these two fac-

tors (GLMM: assay hosts x parasitoid population,

v2 = 8.23, df = 4, P = 0.0836). The mean proportion of

the progeny survival from parasitoid females coming from

different natal hosts was in general high on the different

hosts assayed (more than 0.9 of mean survival) (Fig. 7).

Productivity

A significant effect of the interaction between factors was

observed on productivity (GLMM: assay hosts x parasitoid

population, v2 = 14.81, df = 4, P < 0.01). Productivity was

significantly different when comparing parasitoids from the

A. pisum-alfalfa race on their natal host (APA:

0.81 � 0.05) to the low productivity showed by parasitoids

from the A. pisum-pea race (APA: 0.64 � 0.06), when

assayed on A. pisum-alfalfa race (Fig. 8). Moreover, the

parasitoids from S. avenae showed no significant differ-

ences for productivity on their natal host (SA: 0.7 � 0.07)

compared to the non-natal hosts (APA: 0.82 � 0.07 and

APP: 0.76 � 0.07) (Fig. 8). There were no significant

effects for the assayed host (GLMM: assay hosts, v2 = 1.86,

df = 2, P = 0.3941) or for the parasitoid population

(GLMM: parasitoid population, v2 = 2.84, df = 2,

P = 0.2419).

Sex ratio

The sex ratio of the progeny of parasitoid females devel-

oped on natal and non-natal hosts was studied. A signifi-

cant effect was observed for the assayed host (GLMM:

assay hosts, v2 = 6.05, df = 2, P < 0.05), but not for the

parasitoid population (GLMM: parasitoid population,

v2 = 0.06, df = 2, P = 0.9709). Significant differences in

(A) (B)

(C) (D)

Figure 2 Mean proportion of time spent attacking natal (dark bars) and non-natal hosts (light bars) of each parasitoid population (Mean � SE). Dif-

ferent letters indicate significant differences expressed per parasitoid population assayed on the four hosts tested; Acyrthosiphon pisum-pea race

(APP), Acyrthosiphon pisum-alfalfa race (APA), Sitobion avenae (SA), and Rhopalosiphum padi (RP). Figure: Parasitoid collected from (A) A. pisum-pea

race; (B) A. pisum-alfalfa race; (C) S. avenae and (D) R. padi.
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the sex ratio of the parasitoids were observed between the

progeny originated from the A. pisum-alfalfa race and

S. avenae. The progeny of the female parasitoids, irrespec-

tive of the source host (all different parasitoid popula-

tions) developed on A. pisum-alfalfa host race, showed a

male-biased sex ratio (0.68 � 0.05; mean male proportion

in the total progeny � standard error of the mean), which

was significantly different from that observed on the S.

avenae host, where the sex ratio was closer to equality

(0.56 � 0.05). Otherwise, no significant differences in sex

ratios of the progeny originated from the A. pisum-alfalfa

and the A. pisum-pea races (0.61 � 0.05) were observed.

The interaction between the factors was significant

(GLMM: assay hosts x parasitoid population, v2 = 10.17,

df = 4, P < 0.05). Parasitoids from the A. pisum-alfalfa

race showed a male-biased sex ratio on their natal host

(APA: 0.75 � 0.06), when compared to the non-natal host

race, where a significant closer-to-equality sex ratio was

observed (APP: 0.47 � 0.08) (Data S1). In addition, there

were no significant differences among sex ratios in parasi-

toids from S. avenae on the different hosts assayed,

although it is worth noting that these exhibited a close to

equality sex ratio on their natal host (SA: 0.48 � 0.08),

showing marginally significant differences when compar-

ing the sex ratio expressed on non-natal hosts (APA:

0.67 � 0.1 and APP: 0.65 � 0.09).

Developmental time

Parasitoids from different hosts showed no significant dif-

ferences in their mean developmental time on the different

assayed hosts, ranging from 15.0 � 0.19 to

17.2 � 0.8 days (mean number of development

days � standard error). No significant effects were found

for the analyzed factors or for the interaction between these

factors (GLMM: assay hosts, v2 = 4.28, df = 2, P = 0.1177;

parasitoid population, v2 = 0.56, df = 2, P = 0.7541; assay

hosts 9 parasitoid population, v2 = 0.39, df = 4,

P = 0.9825) (data not shown).

Prevalence of Aphidius ervi on different aphid hosts in the

field

Field sampling revealed that A. ervi is the most common

parasitoid species parasitizing the A. pisum complex. It rep-

resents more than 94% of all parasitoid individuals emerg-

ing from this host in the two different regions sampled (in

total 877 individuals) (Data S2). Additionally, the diversity

of parasitoid species associated with A. pisum was low,

including parasitoids from the genus Praon (P. volucre and

P. gallicum) and Aphidius (A. matriariacae and A. coleman-

i). All these species have been described as parasitoids

prone to be habitat generalists (associated with different

plant families) and host aphid generalists (Star�y et al.

1994). On cereal aphids, a larger parasitoid diversity was

observed in comparison with that observed on the A. pisum

complex. A total of 596 parasitoid individuals were sam-

pled from the aphid S. avenae, identifying up to nine para-

sitoid species, the most represented being the genus

Aphidius. These included A. ervi (38%), A. uzbekistanicus

(28%), A. rhopalosiphi (12%), A. picipes (3%), A. colemani

(3%), and A. matricariae (0.4%), although P. volucre (9%),

P. gallicum (6%), and Lysiphlebus testaceipes (0.5%) were

also detected. Furthermore, S. avenae and R. padi appeared

as the common resource for the same parasitoid assem-

blage. From the aphid R. padi, a total of 250 parasitoid

individuals were obtained. R. padi was mostly parasitized

by A. colemani (34%), A. uzbekistanicus (22%), A. rhopalos-

iphi (20%) and by A. ervi to a lesser extent (11%), but also

by L. testaceipes (10%), A. picipes (2.4%), P. volucre (0.4%),

P. gallicum (0.4%), and A. matricariae (0.4%) (Data S2).

These observations are in agreement with what has been

previously reported by Star�y et al. (1994), Gerding et al.

(1989) and Gerding and Figueroa (1989), who described A.

ervi as the most predominant parasitoid species controlling

S. avenae aphids in Chile.

Discussion

Parasitoid insects represent one of the most used natural

enemies for biological pest control as they are commonly

Table 2. Kaplan–Meier estimator of the mean time to first attack and

sting and standard errors (Mean � SE) computed for each parasitoid

population assayed on their natal and non-natal hosts.

Parasitoid

population

Assayed

host

Time to first

attack

Time to first

sting

A. pisum-

alfalfa race

APA 78.33 � 0.1581 38,54 � 0,269

APP 262.01 � 0.1581 54.81 � 0.1581

SA 324.86 � 0.166 85.64 � 0.166

RP 280.7 � 0.1549 238.04 � 0.3581

A. pisum-pea

race

APP 132.5 � 0.1581 156.8 � 0.1581

APA 583 � 0.1549 355.08 � 0.1449

SA 150.59 � 0.1581 339.9 � 0.1581

RP 394.9 � 0.1581 *

R. padi RP 234.7 � 0.1581 212.34 � 0.1581

APA 284.4 � 0.1581 79.1 � 0.1549

APP 50.78 � 0.1581 163.68 � 0.1581

SA 94.72 � 0.1581 128 � 0.1581

S. avenae SA 77.4 � 0.1581 114.06 � 0.1581

APA 80.76 � 0.1581 187.65 � 0.1549

APP 471.2 � 0.1581 287.66 � 0.1581

RP 296.1 � 0.1581 360.08 � 0.1549

APA, Acyrthosiphon pisum-alfalfa race; APP, Acyrthosiphon pisum-pea

race; SA, Sitobion avenae; RP, Rhopalosiphum padi (In dark the natal

host).

Bold numbers indicate time to first behaviour on natal host as baseline

comparison.

*Parasitoids did not perform this behavior on the assayed host.
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considered to be host-specific (Godfray 1994). Not only

does this mean that the released parasitoids will be most

efficient at attacking the target pest species, but also it

reduces the possibility of environmental harm through

spillover of rapidly growing populations from crops into

adjacent natural habitats (Rand et al. 2006), as has been

observed for generalist predators (Duelli et al. 1990).

However, parasitoids are seldom specific to the point of

attacking only one host species, and there are many para-

sitoid species that have a wide host range (Mackauer and

Star�y 1967). Also, the parasitoid host range may not be

consistent across the distribution of an entire species,

and different studies have reported the possibility of host

adaptation occurring in parasitoid populations, thus

restricting the potential host range (Antolin et al. 2006;

Stireman et al. 2006; Abrahamson and Blair 2008; Henry

et al. 2008). Indeed, within the range of all potential

hosts, not all of them are equally preferred and/or

become susceptible to the development of parasitoids

(Desneux et al. 2009).

Host range use by Aphidius ervi

The parasitoid A. ervi has been described not only as a hab-

itat generalist, but also as a moderate host specialist, being

found associated with different crops (e.g., poaceas, fabace-

as, and solanaceous). However, it is not necessarily para-

sitic to all available host species associated with those crops

(Stilmant et al. 2008). For instance, the aphid R. padi has

been reported within the range of potential hosts for A. ervi

(Kavallieratos et al. 2004). In this context, the reciprocal

transplant experiments conducted in this study showed

that A. ervi females are able to discriminate and choose

between host aphid species that are experimentally offered

(A) (B)

(C) (D)

Figure 3 Mean frequency of stings of each parasitoid population on natal host (dark bars) and on non-natal hosts (light bars) (Mean � SE). Different

letters indicate significant differences expressed per parasitoid population assayed on the four hosts tested; Acyrthosiphon pisum-pea race (APP), A-

cyrthosiphon pisum-alfalfa race (APA), Sitobion avenae (SA), and Rhopalosiphum padi (RP). Figure: Parasitoid collected from (A) A. pisum-pea race;

(B) A. pisum-alfalfa race; (C) S. avenae and (D) R. padi. nd; denotes no data.
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for oviposition. In fact, the results indicate that parasitoids

collected from A. pisum-alfalfa race and S. avenae showed

the lowest infectivity on R. padi (Figs 3 and 4). Moreover,

A. pisum (both host races), S. avenae, and even R. padi-

originated parasitoids were characterized by taking more

time to achieve a first sting when R. padi was offered as a

host, which could be interpreted as a nonpreference

(Table 2). Furthermore, A. pisum-pea race-originated par-

asitoids did not perform any stinging behavior on R. padi.

At the same time, these behaviors were accompanied by a

reduced parasitism rate on R. padi aphids compared with

the other assayed hosts (A. pisum complex and S. avenae),

thereby suggesting that R. padi represents a low-quality

host for A. ervi. This was corroborated by the lower preva-

lence of A. ervi on R. padi observed in the field, in compari-

son with the higher prevalence on A. pisum and S. avenae.

Recently, Desneux et al. (2012) suggested that host range

constraints among parasitoids could be strongly influenced

by host phylogeny (phylogeny specialization). Therefore,

closely related host aphid species are more likely to share

traits related to susceptibility to a certain parasite or para-

sitoid due to a common evolutionary history (Desneux

et al. 2012). This hypothesis has been proposed for the

aphid-parasitoid Binodoxys communis, for which a strong

effect of host phylogeny on host acceptance (preference)

and parasitoid survival (performance) was described, show-

ing that both traits showed a phylogenetic conservatism

with respect to the host species (Desneux et al. 2009).

Binodoxys communis successfully parasitizes hosts with a

closer phylogenetic proximity to its main host, the soybean

aphid Aphis glycines, rather than other phylogenetically

more distant hosts (Desneux et al. 2012). In this sense, the

results reported here show that A. ervi maintains a higher

infectivity and virulence on the A. pisum and S. avenae

(A) (B)

(C) (D)

Figure 4 Mean proportion of time spent stinging natal host (dark bars) and non-natal hosts (light bars) of each parasitoid population (Mean � SE).

Different letters indicate significant differences expressed per parasitoid population assayed on the four hosts tested; Acyrthosiphon pisum-pea race

(APP), Acyrthosiphon pisum-alfalfa race (APA), Sitobion avenae (SA), and Rhopalosiphum padi (RP). Figure: Parasitoid collected from (A) A. pisum-pea

race; (B) A. pisum-alfalfa race; (C) S. avenae and (D) R. padi. nd: denotes no data.
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hosts, which indeed have a closer phylogenetic proximity

(both belonging to the tribe Macrosiphini). Consequently,

the lower infectivity and virulence (parasitism rate)

observed in the phylogenetically more distant R. padi

(belonging to the tribe Aphidini) supports the Desneux

et al. (2012) hypothesis as both tribes diverged over 50–70
million of years ago (von Dohlen et al. 2006). Nevertheless,

further studies are necessary to determine whether this pat-

tern of host use observed for A. ervi is influenced by host

phylogeny, including several populations and throughout

different geographical ranges.

Pattern of local adaptation in Aphidius ervi parasitoids:

infectivity and virulence on natal and non-natal hosts

The use of different hosts imposes divergent selection

pressures on parasitoid populations through fitness

trade-offs related to the use of different hosts, thus driv-

ing local adaptation of parasitoid populations to their

natal host (Kawecki and Ebert 2004). Several interacting

factors may counteract the adaptive process, including

gene flow, environmental variability, phenotypic plastic-

ity, and the lack of genetic diversity (Kawecki and Ebert

2004; Crispo 2008). The results obtained in this study

indicate that natural populations of A. ervi coming from

different hosts in the field exhibit important differences

in infectivity on their natal host in comparison with

non-natal hosts, although this pattern was not observed

for all the parasitoid populations nor in all behavioral

variables studied. Despite the above, the virulence (a

proxy for fitness in parasitoids) expressed by these pop-

ulations on the tested aphid hosts shows a lack of local

host adaptation. Parasitoids obtained from the aphid

hosts S. avenae, A. pisum-alfalfa race, and A. pisum-pea

(A) (B)

(C) (D)

Figure 5 Mean proportion of time spent walking on natal host (dark bars) and non-natal hosts (light bars) of each parasitoid population

(Mean � SE). Different letters indicate significant differences expressed per parasitoid population assayed on the four hosts tested; Acyrthosiphon pi-

sum-pea race (APP), Acyrthosiphon pisum-alfalfa race (APA), Sitobion avenae (SA), and Rhopalosiphum padi (RP). Figure: Parasitoid collected from

(A) A. pisum-pea race; (B) A. pisum-alfalfa race; (C) S. avenae and (D) R. padi.
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race showed a greater infectivity on their natal host in

comparison with that shown on non-natal hosts, but

only for some of the behavioral variables studied (e.g.,

time to first sting). For parasitoid populations from S.

avenae and A. pisum-alfalfa race, the proportion of time

spent stinging was significantly greater when the natal

host was offered compared to non-natal hosts, and for

the S. avenae-originated parasitoids, the frequency of

stinging was significantly greater when the natal host

was offered compared to non-natal hosts. Otherwise, sig-

nificant differences in ‘the time to the first attack’ on

hosts were observed for parasitoid populations from S.

avenae and A. pisum-pea race, while significant differ-

ences for ‘the time to the first sting’ on hosts were

observed for three of the four parasitoid populations

studied (from both A. pisum races and S. avenae), tak-

ing less time to attack and sting when the natal host

was offered in comparison with the non-natal hosts.

Contrastingly, the virulence assay showed a high plastic-

ity for traits related to fitness. The three different para-

sitoid populations studied (from both A. pisum races

and S. avenae) showed a similar high virulence (parasit-

ism rate, survival, and productivity) on natal and non-

natal hosts (APA, APP, and SA), thus providing evi-

dence for the absence of local host adaptation. Addition-

ally, an unusual male-biased sex ratio in the offspring of

parasitoid females on both natal and non-natal hosts

was observed, as well as an unexpected male-biased sex

ratio of parasitoids from the A. pisum-alfalfa race on

their natal host when compared to the non-natal host

race. A possible explanation for these finding is that

aphids from early stages were used for these assays, and

inadvertently, some variation in size of the aphids used

could have affected, to some degree, the female sex allo-

cation. The theory of sex allocation predicts that parasi-

toids should lay male eggs in small hosts and female

eggs in large hosts (Charnov et al. 1981; Godfray 1994).

The results presented here do not support the ‘sequential

radiation’ hypothesis for these introduced populations

(Abrahamson and Blair 2008), as parasitoids collected from

both host races of A. pisum did not show fitness compro-

mises in the reciprocal transplant experiments (i.e., a

higher fitness on their natal host race than on non-natal

Figure 8 Productivity (mean � SE) of the A. ervi populations with dif-

ferent host origins on the assayed hosts. Assayed hosts and parasitoids

origins were: Acyrthosiphon pisum-alfalfa race (APA); Acyrthosiphon pi-

sum-pea race (APP); Sitobion avenae (SA); and Rhopalosiphum padi

(RP).

Figure 6 Parasitism rate; proportion (mean � SE) of aphid mummies

formed by parasitoid females with different host origins on their natal

and non-natal hosts. Assayed hosts and parasitoids origins were: Acyr-

thosiphon pisum-alfalfa race (APA); Acyrthosiphon pisum-pea race

(APP); Sitobion avenae (SA); and Rhopalosiphum padi (RP).

Figure 7 Survival; proportion (mean � SE) of adult emergence of para-

sitoid progeny from assayed hosts. Assayed hosts and parasitoids origins

were: Acyrthosiphon pisum-alfalfa race (APA); Acyrthosiphon pisum-

pea race (APP); Sitobion avenae (SA); and Rhopalosiphum padi (RP).
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host races). Consequently, Bilodeau et al. (2013) rejected

the sequential radiation hypothesis for introduced popula-

tions of A. ervi in North America, based on population

genetic and experimental data. The inconsistency between

the lack of local host adaptation and the differences in par-

asitoid infectivity observed is not surprising. A joint evolu-

tion of preference and performance is not always observed,

due to the need for coupling based on pleiotropy or by

linkage disequilibrium between both traits (Futuyma and

Moreno 1988; Forister et al. 2007). In addition, unlike the

traits related to the parasitoid virulence, behavioral traits

related to parasitoids infectivity can be strongly influenced

by imprinting effects (i.e., host fidelity due to the preadult-

host experience), thus explaining the greater preference to

the host from which they emerged. Different studies have

demonstrated that host fidelity in A. ervi can be induced

even after a single generation, indicating that this

mechanism is plastically induced and not under direct

selection (Daza-Bustamante et al. 2002; Henry et al. 2008).

Although host fidelity has proved to encourage the host

adaptation through continual use of the same host species

(Forbes et al. 2009), by itself it is not sufficient for the for-

mation and maintenance of host adaptations in parasitoid

populations, even under reduced gene flow between popu-

lations. Fitness trade-offs on the alternate hosts in these

populations is a critical prerequisite for local adaptation

(Kawecki and Ebert 2004; Abrahamson and Blair 2008). In

this regard, the lack of local host adaptation in our results

could be explained by the selective environments where A.

ervi is found, where, in rapidly changing environments,

generalist plastic phenotypes would be favored. In fact, the

evolution of adaptive phenotypic plasticity (i.e., plasticity

that increases mean fitness across environments) could be

favored over local adaptation in the presence of environ-

mental heterogeneity (Kawecki and Ebert 2004; Crispo

2008; Svanb€ack et al. 2009). In this respect, the aphid-para-

sitoid population dynamics in agroecosystems has been

classically described as a metapopulation, characterized by

frequent local extinctions and recolonizations (Weisser

2000; Rauch and Weisser 2007). In doing so, frequent

extinctions obliterate locally adapted gene pools through

increased dispersal, so extinction-colonization dynamics

(i.e., metapopulation dynamics) are unfavorable to local

adaptation (Kawecki and Ebert 2004). Thus, fluctuations in

host abundance (in time and/or space) could favor the

maintenance of generalist parasitoid populations with the

ability to simultaneously maximize fitness on more than

one host (Hufbauer and Roderick 2005). However, other

nonmutually exclusive explanations must not be ruled out.

For instance, a short time has elapsed since the introduc-

tion of A. ervi in Chile, so the potential loss of genetic vari-

ation during the introduction process could have delayed

the adaptive process. Furthermore, a high gene flow of

A. ervi among other aphid hosts could be detrimental to

local host adaptation, due to its homogenizing effect of the

genetic variation between parasitoid populations through a

continuous gene introgression within locally adapted de-

mes (Rasanen and Hendry 2008). In the same sense, a high

gene flow could also result during the selection for

increased plasticity, or alternatively, plasticity may promote

gene flow between different selective regimens (Crispo

2008) by allowing migrants to maintain high fitness (viru-

lence) across alternative hosts and thus facilitate coloniza-

tion, population growth, and population persistence

(Thibert-Plante and Hendry 2010; Chevin and Lande

2011), which would translate into a direct benefit for the

control of a target pest.

Implications for biological control

Regarding the use of alternative hosts, different evolution-

ary trajectories could be followed by biological control

agents after their introduction to new geographic areas. In

this way, natural, locally adapted enemies should have

higher rates of population increase and/or be more effi-

cient at controlling a certain aphid host (Hufbauer and

Roderick 2005). However, high gene flow rates between

host-associated populations could prevent local adapta-

tion, while adaptive phenotypic plasticity may be favored

over adaptive differentiation in organisms living in fluctu-

ating environments (Thibert-Plante and Hendry 2010)

such as most agricultural environments. Our results have

shown the lack of local host adaptation and highlight the

role of phenotypic plasticity allowing parasitoids to maxi-

mize fitness on more than one host, thus enabling them to

potentially use different aphid species. This observation is

accompanied by evidence of a high gene flow among dif-

ferent host-associated parasitoid populations in the field in

Chile (F. A. Zepeda-Paulo, unpublished). However, the

parasitoid A. ervi does not equally use its potential host

range, showing a low preference and virulence to R. padi,

which suggests an effect of host phylogeny on the traits

studied. In addition, the infectivity of A. ervi shows host

preferences mediated through host fidelity of some popu-

lations, demonstrated by significant differences in infectiv-

ity across the different hosts studied. In this respect, host

fidelity has been observed to have an effect on parasitism

rates in mass-reared A. ervi on a novel host; however, these

preferences could be switched back to the original host in

a single generation (Henry et al. 2008). In terms of pest

suppressiveness, a highly plastic control agent such as A.

ervi should be more suppressive in field crops than other

more rigid and specialized parasitoids because they would

be more resilient to environmental changes, thus increas-

ing any insurance effects. Therefore, changing agricultural

settlings, characterized by frequent crop rotations between
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seasons that include different plant families and short crop

cycles, will result in variations in aphid biodiversity and

abundance on alfalfa and gramineous crops (or after pesti-

cide use and tillage). The latter could particularly affect

locally adapted parasitoid populations by reducing the

resilience of such landscapes. Hence, introduced biocon-

trol agents with the capacity to use and maintain a high

performance on alternative hosts could allow a more effi-

cient biological control through the continuous movement

of parasitoids from alternative hosts acting as reservoirs to

the target pest populations (Star�y 1993; Landis et al.

2000). In fact, the simultaneous control of a target and

nontarget pest by the same parasitoid biocontrol agent has

been proposed as the key factor for the successful biocon-

trol of cereal aphids in Chile (Star�y et al. 1993). On the

other hand, high parasitoid plasticity in the use of distinct

hosts could be favored (or adaptive) under the current cli-

mate-change scenario, which predicts a greater frequency

and intensity of pest outbreaks due to the disruption of

parasitoid–herbivore dynamics (Stireman et al. 2005; Tyli-

anakis et al. 2008). Indeed, a genotype–genotype associa-

tion has been shown to be altered by the recent increase in

local average temperatures in an aphid-parasitoid associa-

tion of a cultivated crop (Lavandero and Tylianakis 2013).

All this poses the need to incorporate new eco-evolution-

ary approaches in the selection process of biocontrol

agents. In addition, our present study reaffirms the useful-

ness of this experimental approach to study patterns of

adaptation in biocontrol agents to certain target hosts,

thus making a clear distinction between infectivity (prefer-

ence) and virulence (proxy of fitness) of parasitoids,

because often both are camouflaged in the measures of

adaptation or explicitly focused on infectivity as the main

measure of host adaptation (Hufbauer and Roderick

2005). Future research should be focused on the potential

of phenotypic plasticity as an adaptive mechanism in gen-

eralist parasitoids living in changing environments, deter-

mining the effect of high plastic parasitoids on the

efficiency of pest control, and quantifying the relative fre-

quency and dynamics of these A. ervi and aphid-host pop-

ulations in the field. This will become especially relevant,

as practices of biological control will need to adopt new

strategies for choosing agents and their release under the

present climate change (Roderick et al. 2012). The role of

endosymbionts should not be neglected either as, most

likely, they have an important role to play in the abun-

dance and efficacy of biological control agents in the field

and their prevalence.
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