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Abstract Quantifying the strength of interactions

among introduced and native species across space and

time is critical in understanding biological invasions

as they can attenuate or amplify the magnitude of

impact. The European woodwasp, Sirex noctilio F., a

global threat to pines, is a recent invader to North

America. It attacks and kills primarily Pinus resinosa

and Pinus sylvestris, and encounters a diverse assem-

blage of potential competitors for this resource. We

quantified spatial colonization patterns of this wood-

wasp and resident competitors including scolytine

bark beetles, woodboring cerambycid and buprestid

beetles, and the fungal root rot diseases Armillaria and

Heterobasidion across an 80 year old pine plantation

over 4 years. All xylophages were spatially aggre-

gated, but only on a localized scale of 15–20 m.

Colonizers occurred non-randomly within trees, with

S. noctilio negatively or neutrally associated with all

other colonizing agents, whereas all other insect and

root rot colonizers were mostly positively co-

associated. An autologistic regression with spatially-

weighted variables indicated the probability of a dead

tree exhibiting symptoms of S. noctilio attack was

positively associated with tree density, host species (P.

sylvestris), and density of S. noctilio-attacked trees

from the current and previous year. Interspecific stand

patterns were weaker; probability of attack was

negatively associated only with root rot pathogens.

Across spatial scales, there were mixed (woodborers)

and neutral (bark beetles) associations between S.

noctilio and other co-colonizing insects. Our results

suggest that competitive interactions with resident

species may be contributing to the limited success of S.

noctilio in North America, but are unlikely to be

driving it by themselves.

Keywords Aggregation � Auto- and cross-

correlation � Autologistic regression � Non native

insect � Pinus

Introduction

A poorly understood component of invasion biology is

the interaction among invaders and native biota,

particularly across space and time (Denno et al.

1995; Niemelä and Mattson 1996; Keane and Crawley

2002; Parker and Hay 2005; Carlsson et al. 2009).

Collectively, the role native species play in impeding

establishment and spread of an invasive species is
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termed biotic resistance (Elton 1958). While extensive

research has focused on biotic resistance of native

plants to invaders in plant communities, relatively few

studies have looked at other organisms. Competitive

biotic resistance, in particular, is poorly represented in

studies of non-plant invasions.

Among bark and woodboring insects, direct or

indirect interspecific competition can drive distribu-

tion, abundance, and population dynamics (Graham

1925; Coulson et al. 1976; Light et al. 1983; Miller

1986; Rankin and Borden 1991; Hofstetter et al. 2005;

Davis and Hofstetter 2009). These interactions are

often asymmetrical and can be mediated by biotic and

abiotic factors, such as plant host, microbial associ-

ates, natural enemies, disturbance, and climate (Price

et al. 1980, 1986; Paine et al. 1981; McClure 1984;

Denno et al. 2000; Erbilgin and Raffa 2000; Aukema

et al. 2004). For primary tree-attacking insects, co-

colonization with heterospecifics can exert negative

feedback via competition for resources or intraguild

predation (Coulson et al. 1976; Rankin and Borden

1991; Schlyter and Anderbrant 1993; Schroeder and

Weslien 1994; Dodds et al. 2001; Aukema et al. 2010).

In 2005, Sirex noctilio F. (Hymenoptera: Siricidae),

the European woodwasp, was identified from a 2004

survey trap in central New York State, USA (Hoebeke

et al. 2005). Discovery of this non-native insect was of

particular concern because of its history as a devas-

tating introduced pest in plantations of North Amer-

ican pine across the Southern Hemisphere (Madden

1988; Slippers et al. 2015). Female S. noctilio

inoculate hosts with phytotoxic mucus and a mutualist

fungus, Amylostereum areolatum, both of which aid in

weakening and killing trees (Coutts 1969a, b). Devel-

oping larvae are dependent upon A. areolatum as a

nutritional substrate, extracting nutrients from colo-

nized tissue and cellulases produced by the fungus that

facilitate xylem digestion (Francke-Grosman 1939;

Parkin 1941; Buchner 1965; Thompson et al. 2012).

Confounding early predictions, S. noctilio has

caused limited tree mortality in North America, with

successful attacks restricted primarily to suppressed

Pinus resinosa, a native pine, and Pinus sylvestris, a

naturalized pine from Europe (Dodds et al. 2010;

Ayres et al. 2014). A diverse guild of native

parasitoids have readily adopted S. noctilio as a host

since its advent in North America (Long et al. 2009;

Eager et al. 2011; Standley et al. 2012; Ryan et al.

2012b; Foelker et al. 2016a). However, levels of

parasitism exhibit large spatial and temporal varia-

tions, as do the component members of this guild

attacking S. noctilio (Foelker et al. 2016b; Haavik

et al. 2016). While not definitive, inconsistent and

often relatively low levels of overall parasitism

suggest that by themselves, parasitoids are not acting

as a strong regulating force limiting the success of this

invader.

In North America, unlike anywhere else in its

invaded range, S. noctilio has encountered a large

assemblage of native co-colonizing insects associated

with Pinus spp. (Graham 1925; Savely 1939; Erbilgin

et al. 2002; Dodds et al. 2012). Unfortunately,

relationships between S. noctilio and competing

insects are largely uninvestigated in its native range

in Europe due to its lack of economic importance,

whereas these interactions are absent entirely in the

Southern Hemisphere. Thus, an understanding of these

multipartite species interactions is lacking, even

though they may be a significant driver of the invasion

ecology of S. noctilio in North America.

The suite of pine colonizers is extensive in eastern

North America. Ips pini (Coleoptera: Curculionidae)

is the most prevalent of a large contingent of scolytines

that colonize all portions of the tree (Ayres et al. 2001)

and are active across a wide temporal window that

extends into early fall (Aukema et al. 2004). In

addition, multiple woodboring beetles (Cerambyci-

dae) feed deep in the xylem tissue (Erbilgin and Raffa

2002; Erbilgin et al. 2002) and can even facultatively

feed on S. noctilio as larvae (Thompson 2013). Adding

to the complexity, interactions among S. noctilio, bark

beetles, and woodborers are likely indirect, mediated

through their respective fungal associates (Hurley

et al. 2012; Ryan et al. 2012a; Yousuf et al. 2014a).

This array of competitors may be more analogous to

what S. noctilio encounters in its native range in

Eurasia and North Africa where it is largely a

secondary mortality agent (Chrystal and Myers

1928; Spradbery and Kirk 1978; Ayres et al. 2014).

While spatiotemporal attack patterns of S. noctilio

have been described for some invaded regions of the

Southern Hemisphere (Tribe and Cillié 2004; Corley

et al. 2007; Corley and Villacide 2012; Lantschner and

Corley 2015), analysis of dispersal and colonization is

lacking for North American populations. Though S.

noctilio is a large robust insect, it is suggested that long

distance dispersal is fairly limited, as these events

present a substantial risk for these insects (Corley et al.

1992 C. J. Foelker et al.
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2007; Corley andVillacide 2012). Generally, dispersal

by insects in forest settings is influenced by predation

risk, parasites, energetic reserves, and abundance/

quality of host material (Capinera and Barbosa 1976;

Barbosa et al. 1981; Villacide and Corley 2008).

Empirical and theoretical work indicate a majority of

bark and woodboring insects are located in close

proximity to their emergence site and only a small

proportion actually fulfill their full dispersal potential

(Raffa and Berryman 1980; Safranyik et al. 1992;

Turchin and Thoeny 1993; Cronin et al. 2000; Smith

et al. 2001; Corley et al. 2007).

Here, we investigate stand-level colonization pat-

terns of S. noctilio, co-occurring bark and woodboring

insects, and root rot disease fungi at a P. resinosa and

P. sylvestris plantation in New York State from 2011

to 2014. Planted stands of similar composition and age

are ubiquitous across the Northeastern USA and

indeed, appear to represent the majority of habitat

occupied by S. noctilio since its arrival (Dodds et al.

2010). We specifically investigated the independent

distributions and aggregation patterns of five typical

and prominent colonizing agents to pine mortality in

the region: bark beetles (Coleoptera: Curculionidae:

Scolytinae), woodborers (Coleoptera: Cerambycidae

and Coleoptera: Buprestidae), Armillaria root disease,

Annosum root disease, and S. noctilio. Our main

objectives were to explore: (a) patterns of aggregation,

(b) co-occurrence within trees, and (c) spatiotemporal

patterns of S. noctilio attack in relation to density of

co-colonists (both current and previous year) and to

other stand-level factors.

Methods

Pack Demonstration Forest (43.549753�N,
- 73.821885�W), near Warrensburg, NY in the

southeastern corner of the Adirondack Park, is com-

prised primarily of 80–90 year old P. resinosa, P.

sylvestris, and P. strobus plantations. The 48.5 ha site

was historically used for soil nutrients and silviculture

research in the 1940–1950s, but has not been thinned

for over 30 yr (Buxbaum et al. 2005). We conducted a

full stand census of all P. resinosa and P. sylvestris

compartments in late summer from 2012 to 2014 (15

Aug–30 Aug 2012, 25 Aug–5 Sep 2013, and 25 Aug–5

Sep 2014). We marked all dead/dying trees from the

previous summer using a handheld GPS (Garmin Rino

520HCx; accuracy\ 3 m), recorded DBH and species

(P. resinosa or P. sylvestris), and established bound-

aries for all compartments using GPS coordinates

(Fig. 1).

Chronology of S. noctilio colonization can be

reconstructed reliably for the current and previous

attack year based on two diagnostic features: resin

beads and exit holes. Siricid exit holes are distin-

guishable from other woodborers as they are circular,

angled perpendicular to the direction of the main bole,

and are usually clustered together in groups of 10–20

(Ayres et al. 2014). Sirex noctilio exit holes and resin

beads are indistinguishable from those of native

siricids. However, native siricids are much less

abundant than S. noctilio in attacked trees (Eager

et al. 2011; Ryan et al. 2012b; Foelker et al. 2016b).

We recorded visual evidence (exit holes and frass)

of insect co-colonizers along the lower 3 m of the tree

as either being from woodborers and/or bark beetles

and confirmed observations by removing the outer

bark. Prevalent bark beetles were I. pini, Tomicus

piniperda (a non-native European species), and Den-

droctonus valens.

We also inspected the root collar for presence of

two ecologically and economically important root rot

diseases, Armillaria and Annosum. There is a lack of

taxonomic consensus on the causal agents of these

diseases in North America, at least at the species level

(Ross-Davis et al. 2011; Garbelotto and Gonthier

2013), so we hereafter refer to each as Armillaria sp.

(Basidiomycota: Agaricales) and Heterobasidion

irregulare sensu lato (s.l.) (Basidiomycota: Russu-

lales). Bark was peeled at three equidistant points

along the perimeter of the root collar to a depth of

* 30 cm. Armillaria sp. was identified via presence

of thick white mycelial fans or black rhizomorphs

(Omdal et al. 2004; Bendel and Rigling 2008).

Heterbasidion irregulare s.l. was diagnosed using

fruiting bodies, but also by the presence of a paper-thin

mycelium with pustules, lamination (separation of the

growth rings), and pitting (spotted bleaching of the

wood caused by oxidation) (Omdal et al. 2004; Bendel

and Rigling 2008; Garbelotto and Gonthier 2013).

Dead trees in known areas of root rot disease,

particularly H. irregulare s.l., were checked the

following year for signs because fruiting bodies are

often not present during the year of mortality

(Woodard et al. 1998). We collected binary data

(yes/no) for each dead tree on the presence of each of
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these five colonizing agents and allowed for multiple

agents simultaneously in the same tree.

Site variable measurements included a modified

version of Morisita’s ordered distance protocol (Niel-

son et al. 2004) where each compartment was sampled

with two, randomly placed, 50 m transects. We ran

three transects in the two largest compartments in the

southeastern portion of the site. At 10 m intervals

along the transects, the third nearest tree was located,

its distance measured to the transect point, and

diameter at breast height (DBH) recorded. We used

these data to estimate stand density (trees/ha) by

Morisita’s equation. At three points along the transect

(10, 30, and 50 m), we measured basal area (m2/ha)

with an English BAF 10X prism.

Statistical analysis

We analyzed within-tree correlations of presence/

absence of colonizing agents using phi (u) coefficients

Fig. 1 All stand

compartments containing P.

sylvestris or P. resinosa

dead trees (n = 992)

recorded from 2011 to 2014

at Pack Demonstration

Forest in the Adirondack

Park of New York State

1994 C. J. Foelker et al.
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(a derivative of Pearson’s correlation used for binary

data). Ten dying/dead trees exhibited no symptoms of

the investigated colonizing agents and were removed

from the analysis.

We tested the individual aggregative pattern of

each colonizing agent using Ripley’s inhomogeneous

K function with border correction (Ripley 1976). This

function tests the null hypothesis of complete spatial

randomness using an expanding search radius centered

on each event. The inhomogeneous component of the

model allows for scaling based on the intensity of

points (i.e. stand density). We set a maximum search

radius of 50 m to test if the density of events occurring

inside the circle was significantly different from the

global density of events using 2500 bootstrap

replicates.

The spatial autocorrelation for S. noctilio and cross-

correlation for pairwise comparisons of S. noctilio and

all other colonizing agents was estimated using a non-

parametric covariance function with 1000 iterations of

bootstrap resampling (Bjørnstad and Falck 2001). We

used this pairwise comparison method on data pooled

from all years to establish a region of influence for S.

noctilio specifically (autocorrelation) and between S.

noctilio and each individual colonizing agent (cross-

correlation).

To investigate spatial and temporal patterns of S.

noctilio and colonizing agents, we conducted an

autologistic regression on all dead trees using symp-

toms of S. noctilio (resinosis) as the response variable

and separate spatially lagged variables for each co-

colonizer: density of trees killed in the current year

(t) and in the previous year (t - 1). The spatially

lagged variable was calculated as the density of trees

attacked by an individual co-colonizer within a fixed

radius of each tree. Unique radii (r) were calculated for

each colonizing agent based on the spatial autocorre-

lation (for S. noctilio) and cross-correlation function

(see above). Extent of spatial cross-correlations (radii)

was calculated based on the maximum distance over

which covariance was detectable (range) (i.e. covari-

ance[ or\ 0). Density of trees was standardized

based on established boundaries that only included

sampled stands (Fig. 1). A parameter for bark beetles

was not included in the model as the covariance

function indicated an absence of spatial association

between this factor and S. noctilio.

Stand-level variables of trees species (P. resinosa

or P. sylvestris), density (stems/ha), and basal area

(m2/ha) were included in the model. Analysis was

conducted only on dead trees sampled from 2012 to

2014 (n = 723) to include both colonization from the

current (t) and previous year (t - 1). Data from 2011

(n = 269) were omitted as response variables and only

used as previous year (t - 1) variables for 2012. We

constructed one full model with all spatially-lagged

and stand-level variables. All input variables were

standardized (xi/2ri) to facilitate comparison among

predictors (Gelman 2008). We calculated log odds

ratios on untransformed parameter coefficients to

present a magnitude of effect. All data were managed

in ArcGIS (v10.2.2 ESRI) and analyses were con-

ducted in R using the packages ‘ncf’, ‘spatstat’,

‘MBA’, and ‘lme4.’

Results

Over the duration of this study, 992 dead trees were

identified (Fig. 1). The most prevalent colonizing

agents were S. noctilio and bark beetles, collectively

associated with 88.7% of all dead trees (Fig. 2). The

root rot diseases Armillaria sp. and H. irregulare s.l.

were recorded in 24.2% of dead trees, however, they

were never found in the same tree. All colonizing

agents, independent of each other, exhibited a degree

of spatial aggregation, but it was limited to a moderate

spatial scale, exhibiting significant aggregation only

within a radius of 15–20 m (Fig. 3). Heterobasidion

irregulare s.l. differed in that it was strongly aggre-

gated, but there was considerable variability with this

species given its limited abundance at the site (Fig. 2).

Sirex noctilio exhibited strong negative interspeci-

fic associations for within-tree colonization patterns. It

was negatively associated with all other colonizing

agents except bark beetles, with which it was neutral

(Table 1). Armillaria sp. and H. irregulare s.l. had a

weak but significant negative correlation and these

two agents were never identified in the same dead tree.

All other colonizing agents had significant positive

associations, except for bark beetles, which had a

negative association with Armillaria sp. and a neutral

association with H. irregulare s.l.

The degree of spatial autocorrelation and cross

correlation was variable for all pairwise comparisons

against S. noctilio (Fig. 4). Positive spatial autocorre-

lations of S. noctilio and negative cross correlation of

S. noctilio and woodborers exhibited the greatest

Biotic resistance and the spatiotemporal distribution of an invading woodwasp, Sirex… 1995
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distance of correlation (r = 185.7 and r = 188.7,

respectively). Similar to within-tree correlations, S.

noctilio exhibited negative interspecific associations

in stand-level colonization patterns, again with the

exception of bark beetles (neutral). Subsequently, we

did not include bark beetles as a factor in the

autologistic regression model as there were no

within-tree correlations and the spatial cross correla-

tion was not significantly different from zero.

The autologistic regression model indicated prob-

ability of S. noctilio attack increased significantly with

S. noctilio attack density from the current and previous

year, density of woodborer attack from the previous

year, stem density, and if the pine host was P.

sylvestris (Table 2). Presence of root rot disease (both

Armillaria sp. and H. irregulare s.l.) from the current

year were significantly negatively associated with

evidence of S. noctilio attack. Comparisons among

standardized variables indicate the three strongest

factors were density of current year S. noctilio attack

(positive effect), host species (P. sylvestris) (positive

effect), and density of current year Armillaria sp.

attack (negative effect). The strongest factor, current

year S. noctilio attack, had almost a fourfold greater

impact than the two weakest significant factors

(density of previous year woodborer attack and density

of current year H. irregulare s.l. attack).

Patterns of S. noctilio attack were highly aggre-

gated both in space and through time, with an increase

of one attacked tree within the range (i.e. radius when

spatial autocorrelation = 0) in the current and previ-

ous year increasing the probability of attack by S.

Fig. 2 Distributions of five pine colonizing agents across Pack Demonstration Forest, NY. Counts represent the total number of trees

from 2011 to 2014 colonized by each agent. Multiple agents could be present in the same tree

1996 C. J. Foelker et al.
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noctilio by 13.4 and 9.7%, respectfully (Table 2). Log

odds indicated an increase of 100 stems/ha translated

to a 15.1% increase in probability of a dead tree being

symptomatic for S. noctilio. A density increase of one

tree attacked by either root rot diseases in the current

year decreased probability of S. noctilio attack by

* 18%. However, the log odds confidence interval

ranges for density of current year H. irregulare s.l.

attack as well as previous year woodborer attack were

almost twice as wide as that of other significant

variables with both intervals nearly encompassing 1,

indicating they were more variable and less predictive

than other significant factors.

Discussion

This study is the first to investigate the spatial

dynamics of S. noctilio in North America and one of

the first on spatial pattern of S. noctilio mortality in a

stand through multiple years (Corley et al. 2007).

Aggregation of this insect appears to operate across

space and through time, with different factors driving

distributions at different spatial scales (Levin 1992). A

strong aggregative pattern by S. noctilio at broad

spatial scales has been shown in South America

(Corley et al. 2007), but this dissipates as S. noctilio

populations become epidemic (Lantschner and Corley

Fig. 3 Spatial aggregation of colonizing agents at Pack

Demonstration Forest, NY using Ripley’s inhomogeneous

K function with borders correction. The red dashed line

indicates complete spatial randomness and the grey envelope

indicates a 95% confidence envelope calculated from 2500

bootstrapping replications. The black line indicates the degree

of aggregation for each colonizing agent. The space above the

grey envelope indicates aggregation and the space below

indicates regularity

Table 1 Phi (u) coefficients for within-tree associations for all pine colonizing agents in 992 dead trees identified at Pack

Demonstration Forest in northeastern New York State in 2011–2014

Scolytinae Cer/Bupa Armillaria sp. H. irregulare s.l.

Sirex noctilio - 0.03 - 0.35** - 0.42** - 0.14**

Scolytinae 0.35** - 0.12** 0.01

Cer/Bupa 0.24** 0.06*

Armillaria sp. - 0.08*

*P\ 0.05; **P\ 0.01; ***P\ 0.001
aCerambycidae/Buprestidae

Biotic resistance and the spatiotemporal distribution of an invading woodwasp, Sirex… 1997

123



2015). It is notable that S. noctilio displays a high

degree of aggregation at small spatial scales even

though this insect is a large, effective flier as indicated

by flight mill studies showing potential dispersal of

healthy females can exceed 30 km (Villacide and

Corley 2008). Abiotic factors can also impact S.

noctilio aggregation at larger spatial scales, such as

aspect and elevation (Lantschner and Corley 2015); all

of which can be compounded by acute or chronic

stressors like drought (Madden 1988).

Co-colonizing insects play a role in patterns of S.

noctiliomortality, but these effects are strongest at the

tree level rather than the stand. Stand-level interac-

tions were important for root rot diseases though, with

S. noctilio exhibiting negative associations with both

Armillaria sp. and H. irregulare s.l. This may stem

from the relative immobility and strong aggregative

nature of root rot diseases due to their below-ground

vegetative spread. Hanson (1939) and Parkin (1942)

suggest interactions between these two agents hinges

Fig. 4 Spatial nonparametric covariance function estimates of

autocorrelation of S. noctilio attack and cross correlation of S.

noctilio and other colonizing agents at Pack Demonstration

Forest. Red lines indicate the true data and the grey lines

indicate a 95% confidence envelope based on 1000

bootstrapping replicates. The red point is the range (covari-

ance = 0) or the maximum distance over which a spatial

relationship is detectable. The range was used to calculate

spatially lagged variables

Table 2 Full autologistic

regression models testing

effects of spatially lagged

colonizing agents from the

current (t) year and previous

year (t - 1) and stand-level

variables

Log odds ratios and 95% CI

are calculated on

unstandardized coefficient

variables

Factor Estimate (SE) z-value P value Log odds 95% CI

Intercept - 2.26 (0.78) - 2.89 0.004 0.104 0.022, 0.474

S. noctiliot 1.51 (0.28) 5.49 \ 0.001 1.134 1.085, 1.187

S. noctiliot-1 0.81 (0.22) 3.70 \ 0.001 1.097 1.045, 1.153

Woodborerst 0.45 (0.28) 1.59 0.113 1.083 0.982, 1.196

Woodborerst-1 0.38 (0.19) 2.02 0.044 1.092 1.003, 1.191

Armillaria sp.t - 1.05 (0.27) - 3.83 \ 0.001 0.852 0.784, 0.924

Armillaria sp.t-1 - 0.24 (0.23) - 1.03 0.305 0.964 0.898, 1.034

H. irregulare s.l.t - 0.38 (0.19) - 2.00 0.046 0.844 0.709, 0.991

H. irregulare s.l.t-1 - 0.13 (0.18) - 0.71 0.475 0.957 0.848, 1.078

Density (stems/ha) 0.46 (0.23) 1.99 0.047 1.000 1.000, 1.002

Basal area (m2/ha) - 0.29 (0.23) - 1.23 0.220 0.995 0.987, 1.003

Species (P. sylvestris) 1.15 (0.27) 4.20 \ 0.001 3.154 1.866, 5.470

1998 C. J. Foelker et al.
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on fungal colonization of xylem tissue, with develop-

ing siricid larvae avoiding or failing to develop on

wood tissue infected or altered by Armillaria or

Heterobasidion sp. The negative association docu-

mented in our study may be driven by avoidance, with

ovipositing S. noctilio avoiding these trees during host

selection. Siricid ovipositors have complex sensory

structures (Fukuda and Hijii 1996; Hayes et al. 2015),

which facilitate precise host selection by females as

they are able to distinguish subtle changes in tree

moisture content and plant secondary chemistry.

There are surprisingly mixed co-colonization pat-

terns for S. noctilio and bark and woodboring beetles

at the tree and stand level. All insects in this study (S.

noctilio, bark beetles, and woodborers) are effective

fliers in pine stands at the scale analyzed in this study

and limitations due to dispersal were likely minimal.

The negative or neutral associations with these insects

suggest S. noctilio may be targeting a different subset

of trees for colonization. Because of its unique ability

to weaken or condition a tree by injecting phytotoxic

mucus and fungal arthrospores, S. noctilio may be

avoiding co-colonization by attacking trees healthier

than those targeted by most bark and woodboring

beetles. Whether these insects then attack trees

weakened by S. noctilio may be contingent upon local

populations, timing of initial attack, tree condition,

and attack intensity. This could explain the neutral

association between S. noctilio and bark beetles, with

some S. noctilio attacked trees appearing early enough

in the season to incite colonization by late summer

generations of bark beetles (e.g., I. pini), but some

being attacked so late in the fall that they enter winter

with only S. noctilio colonization and are then

unsuitable for bark beetles in the early spring due to

their deteriorated condition.

Indirect interactions with bark beetles are hypoth-

esized to negatively affect S. noctilio (Dodds and de

Groot 2012; Ryan et al. 2012c; Yousuf et al. 2014a).

The results of our research provide no evidence that

these two agents strongly co-occur or partition

resources though; as there was a lack of association

between S. noctilio and bark beetles as indicated by the

whole-tree (Table 1) and stand-level analyses (Fig. 4).

Meaningful interactions with bark beetles (and their

associated fungi) are likely contingent on the spatial

scale of analysis. Within-tree patterns may yield more

representative outcomes for these relationships. This

could have implications for S. noctilio’s population

dynamics though, as negative associations at the

individual insect level do not appear to translate to

patterns at the broader spatial scales addressed in this

study. This is important because it could function as a

negative feedback mechanism if S. noctilio attacked

trees are in close proximity to bark beetle attacked

trees.

Interestingly, Ayres et al. (2014) found similar

patterns in host colonization associations for S.

noctilio and insect assemblages in Galicia, Spain,

with S. noctilio having neutral relationships with

scolytines, excluding T. piniperda (with which it has a

positive association). Unfortunately, fall surveys for

this project occurred long after T. piniperda coloniza-

tion and reasonable species level identifications could

not be determined via gallery systems. Ayres et al.

(2014) also found similar patterns of association

among all species (Scolytinae, Buprestidae, Ceram-

bycidae, Armillaria sp.) when compared to this study

(Table 1), suggesting major insect and root pathogen

assemblages in North America are a suitable analog to

its native habitat in Eurasia.

Recent studies in North America present evidence

that biotic resistance from native insect assemblages

may hamper the success of S. noctilio (Ryan et al.

2012c; Haavik et al. 2015) and that these assemblages

are similar to those present in Europe, where it is a

non-pest (Ayres et al. 2014). The strongest mechanis-

tic explanation for this hypothesis is that competition

for xylem tissue between A. areolatum and bark

beetle-vectored fungi (Ophiostoma and Lep-

tographium spp.) does not favor S. noctilio’s symbiont

and can compromise development. This has support

from emergence studies (Ryan et al. 2012c), in vitro

competition assays between these fungi (Ryan et al.

2011; Hurley et al. 2012; Yousuf et al. 2014b),

exclusion manipulations (Haavik et al. 2015), and

in situ comparisons of survivorship (Foelker 2016).

However, it is unknown if this mechanism is acting

alone or in concert with other factors.

Biotic resistance is multifaceted and may be

operating through multiple mechanisms across spatial

scales. A possible additional limitation is that native

insects are removing potential host trees early in the

season before S. noctilio emergence—over 30% of

dead trees in this study showed no evidence of S.

noctilio attack. When S. noctilio does emerge, it likely

rejects trees already colonized by woodborers and

bark beetles due to an aversion to host infected with
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bluestain fungi (Ryan et al. 2012a), a pattern noted in

the Southern Hemisphere (Clarke et al. 2016). These

native insects thus narrow the pool of potential hosts

across a stand. This scenario is not present in the

Southern Hemisphere, where trees may persist in a

weakened state for an extended time since there are

very few mortality agents.

Bottom-up factors also can influence patterns of

mortality attributed to S. noctilio. More attacks

occurred on P. sylvestris, an ancestral Eurasian host

naturalized to North America, as has been found in

other studies of S. noctilio (Dodds et al. 2010; Zylstra

et al. 2010; Ayres et al. 2014). The basis for this

pattern is unclear and could involve several factors,

including preference for a familiar host, variation in

defensive responses, or environmental stressors. There

is considerable interspecific variation in secondary

chemistry and the composition of co-colonizing

insects among pine species (Thoss et al. 2007; Zylstra

et al. 2010; Böröczky et al. 2012; Dodds et al. 2012),

but it is uncertain if this is biologically meaningful for

S. noctilio. Additionally, P. sylvestris stands across

northeastern North America are largely unmanaged

and often overstocked, senescing, and located at sites

with poor growing conditions (Dodds and de Groot

2012).

Due to its size and high vagility, S. noctilio may

function over larger spatial scales than other forest

insects. This is particularly important in comparisons

between the invaded regions of North America and the

Southern Hemisphere, as one of the key differences is

the extent, distribution, and homogeneity of host

across the landscape (Dodds and de Groot 2012).

Increasingly homogeneous landscapes in terms of host

composition have intrinsic properties that can posi-

tively affect insect population dynamics, such as

increasing patch size and decreasing distance among

patches (Dunning et al. 1992). Each patch can

subsequently support a larger population and disper-

sants have a higher likelihood of encountering a host

and a shorter distance to travel. The distribution and

amount of suitable pine for S. noctilio across north-

eastern North America is dispersed and limited, which

may be an underlying factor limiting its population

growth in the region. This, in concert with parasitoids

and competition from native insects, is likely exerting

a strong degree of biotic resistance. It is uncertain how

this scenario could be altered as S. noctilio invades

southern forests, where climate and host composition

and homogeneity are more closely aligned with

Southern Hemisphere conditions.
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