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Plants have developed morphological, physiological, biochemical, cellular, and
molecular mechanisms to survive in drought-stricken environments with little or no
water caused by below-average precipitation. In this mini-review, we highlight the
characteristics that allows marama bean [Tylosema esculentum (Burchell) Schreiber], an
example of an orphan legume native to arid regions of southwestern Southern Africa, to
flourish under an inhospitable climate and dry soil conditions where no other agricultural
crop competes in this agro-ecological zone. Orphan legumes are often better suited to
withstand such harsh growth environments due to development of survival strategies
using a combination of different traits and responses. Recent findings on questions
on marama bean speciation, hybridization, population dynamics, and the evolutionary
history of the bean and mechanisms by which the bean is able to extract and conserve
water and nutrients from its environment as well as aspects of morphological and
physiological adaptation will be reviewed. The importance of the soil microbiome and
the genetic diversity in this species, and their interplay, as a reservoir for improvement
will also be considered. In particular, the application of the newly established marama
bean genome sequence will facilitate both the identification of important genes involved
in the interaction with the soil microbiome and the identification of the diversity within the
wild germplasm for genes involved drought tolerance. Since predicted future changes
in climatic conditions, with less water availability for plant growth, will severely affect
agricultural productivity, an understanding of the mechanisms of unique adaptations in
marama bean to such conditions may also provide insights as to how to improve the
performance of the major crops.

Keywords: orphan legumes, marama bean, drought response, soil microbiome, genome sequence

DRY ENVIRONMENTS AND ORPHAN LEGUMES

Dry environments have little or no water with below-average precipitation due to periodic droughts
resulting in prolonged water shortage. A drought period can last from a few days to months
or years. Such a drought period is often accompanied by intensive heat significantly worsening
drought effects due to additional increased water evaporation. Drought-stricken environments
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are highly unsuitable for production of high-input, high-yielding
food crops mostly selected for optimal yield under non-drought
conditions (Evenson and Gollin, 2003).

Orphan, or underutilized, legumes, are staple food crops
in many developing countries. Their neglect has been the
subject of two reports from the National Research Council
(1979, 2006). They have generally little economic importance
and have not been greatly improved by breeders (Naylor
et al.,, 2004; Foyer et al., 2016). Like landraces of major food
crops, orphan legumes have genetically adapted over time
to their natural environment largely unmodified by human
breeding efforts (Trytsman et al., 2011). These legumes are often
better suited to withstand harsh growth environments, having
developed morphological, physiological, biochemical, cellular
and molecular mechanisms to survive in dry drought-stricken
environments (Osakabe et al., 2014; Tatrai et al., 2016). Although
orphan legumes frequently respond like most plants to stress,
they might have developed unique survival mechanisms using a
combination of different traits and responses resulting in growth
in dry drought-stricken environments. Detailed knowledge of
such mechanisms therefore provides valuable information for
breeders on useful traits and responses for survival in extreme
environments (Cullis and Kunert, 2017). Such orphan legume
crops include groundnut (Arachis hypogaea), grass pea (Lathyrus
sativus), bambara groundnut (Vigna subterranea), cowpea (Vigna
unguiculata), and marama bean (Tylosema esculentum), the last
included by The Kirkhouse Trust focusing on improving locally
important legume crops'.

Purpose of this mini-review is to provide a short overview
of the existing knowledge and current advances in the research
to understand the biology of the plant. This also includes the
mechanisms the bean employs to survive in regions where
few conventional crops can thrive and flourish. An improved
understanding of these mechanisms might also not only help
breeders to learn more about particular characteristics for
survival in dry drought stricken environments but also the bean’s
usefulness, both as a model and a future crop, to combat climate
change and to attract interest in the development of the bean into
mainstream agriculture.

MARAMA BEAN, A PEA FAMILY
MEMBER

Marama bean, a wild perennial legume native to the Kalahari
Desert in Southern Africa, grows mostly in sandy soils. Reports
of the National Research Council, 1979 on “Tropical Legumes:
Resources for the Future” and also in 2006 on “Lost Crops of
Africa: Volume II: Vegetables” highlight the bean. In 1979, it
was for example noted that “Of all the plants described in this
book, the marama bean is, perhaps, the least developed,” while in
2006 it was noted “Strange that marama has not been introduced
into cultivation since above ground, this plant produces seeds
that rival peanut and soybean in composition and nutritive value,
and below, it produces a high-protein tuber much bigger and

Uhttp://www.kirkhousetrust.org/orphanlegumes.html#.VOAvnfmLTIU

more nutritious than any potato, yam, or even sugar beet. In
addition, it thrives in poor-quality soil and under the harshest
of climates. Little is known about the plant and almost nothing
is understood about its cultivation. Among Africa’s many native
foods, this remains one of the most neglected.”

The bean is an important local dietary component, due to its
high seed protein and high carbohydrate content of the tuberous
root (Figure 1). In its native habitat, the bean withstands summer
temperatures reaching 50°C with surface water available usually
only for 8 weeks/year (Powell, 1987; Bower et al., 1988; Nepolo
et al., 2009). Marama bean is currently being developed into
a local crop (Chimwamurombe, 2011) and test gardens have
been already established and efforts are undertaken in Namibia
to produce the bean in well-fenced prepared land for local
communities.

Marama bean belongs to the subfamily Cercidoideae of the
Fabaceae (pea family). The genus Tylosema, to which the bean
belongs, has four additional species (Lewis et al., 2005; Azani
et al, 2017). All members of the Cercidoideae subfamily lack
root nodules. Tylosema species have been investigated by both
palynological and molecular analyses particularly by application
with chloroplast markers such as the matK gene (Hao et al,
2003; Banks et al., 2013). A further member of the subfamily
Cercidoideae is Bauhinia, a genus of more than 500 species of
flowering plants widely cultivated as ornamental trees in tropical
Asia. Tylosema was not considered as a distinct genus and
was originally classified within the Bauhinia genus (Hao et al,
2003). However, Tylosema, was later recognized as a separate
clade within the Bauhiniinae (Wunderlin, 2010). Separation
between Tylosema and Bauhinia has recently been confirmed
by complete chloroplast genomic sequencing and by comparing
specific sequences of a number of genes both from the chloroplast
and nucleus (Kim and Cullis, 2017). T. esculentum, Tylosema
fassoglense, and putative Angolan species (Castro et al., 2005) may
be, in reality, a single genetically diverse species, within which it
maybe be possible to identify land races or some similar entity. As
with many African plant lineages, marama bean fits nicely with
the little used “ochlospecies” concept first proposed by White
(1998), and which seems to apply to many widespread African
taxa (Cronk, 1998).

DROUGHT ADAPTATION MECHANISMS

Marama bean has developed, as a drought avoider, several
survival mechanisms for life in a dry drought-stricken
environment. The morphological and physiological adaptation
of the bean to its growth environment has been recently reviewed
by Lawlor (2018). The bean reacts like many other plants
growing in dry environments but combines different well-known
avoidance mechanisms. The bean avoids water stress by leaf
reduction to reduce water loss and reduces stem elongation and
number of leaves, at the extreme to complete die back in cooler
months (Mitchell et al., 2005; Travlos and Karamanos, 2008;
Karamanos and Travlos, 2012). Under well-watered conditions,
the bean is highly branched with runners extending along the
ground and produces a great number of leaves and biomass
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FIGURE 1 | (A) Prostrate vines with flowers. (B) Young and edible marama bean tuberous roots. Scale bar in Ais 10 cm. (C) Large tuber weighing approximately
240 kg, with abundant foliage. Scale bar in C is 25 cm. (D) Seeds. Scale bar in D is 1 cm.

(Mitchell et al., 2005; Karamanos and Travlos, 2012; Figure 1A).
The bean has also a tap root allowing penetration deep below the
surface to access subsoil-moisture (Comas et al., 2013). Since the
bean grows in sandy soils, water can remain in the root zone for
months after rain and a tap root is able to access this water.
Marama bean is also a creeper with scandent stems creeping
in several directions covering large areas (Keegan and Van
Staden, 1981; Figure 1A). This behavior very likely helps to
withstand drying winds. Also, typical for a drought avoider, is
the relatively early closure of stomata under water stress to save
water and maintain the leaf water potential (Mitchell et al., 2005;
Karamanos and Travlos, 2012). Stomatal opening represents an
important regulatory mechanism during limited water supply
and heat stress, influencing simultaneously water loss via
transpiration and CO; diffusion into the leaf apoplast. This
behavior is very different from a legume like soybean, in which
large differences in leaf water potential exists between drought-
stressed and unstressed leaves (Villalobos-Rodriquez and Shibles,
1985). Experiments have also been carried out to understand
leaf movements in marama bean (Travlos et al., 2008). To avoid
direct sunlight, plants can carry out complex daily heliotropic
adjustments of leaf angles to reduce transpiration losses by
diminishing the light interception (para-heliotropism) in which

the DREBIA gene might play an important role (van Zanten et al.,
2010; Rakocevic et al., 2017). Travlos et al. (2008) reported that
the leaves of the bean are open during the day and close during
the night, with similar behavior of plants under different growth
temperatures. Potassium deficiency can, however, prevent leaf
closure during the night but detailed investigations to determine
if any heliotropic adjustments are also involved in drought
avoidance are so far missing.

A further drought avoidance mechanism of the bean is the
formation of a tuberous root (Figures 1B,C). The tuber root
is both a starch reservoir and a water reservoir. The marama
bean root is also high in protein containing about nine percent
protein on a dry-weight basis (National Research Council, 2006).
A large number of tropical legumes develop below-ground organs
for carbohydrate storage (Saxon, 1981). The storage organ may
be an enlargement of the tap root, swollen fibrous roots or, as
in the case of marama bean, a true tuber. The bean very likely
survives a drought condition by accessing the water stored in
the tuber. Older tubers weighing more than 200 kg (Figure 1C)
can contain 90% water by weight. Since the tuber remains viable
under drought, it allows rapid vegetative re-growth of stems
under more favorable growth conditions as a drought survival
strategy (Travlos and Karamanos, 2008). Few older leaves may
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also maintain leaf function under drought to allow more rapid
re-growth when water is again available (Mitchell et al., 2005).
However, when the water content of the tuber falls to about 85%,
these older leaves are discarded to increase survival for months in
a dry environment.

The tuber also has potential as a component of yield. Since
marama bean does not flower until the second year after planting
from seed, the tuber, if well-developed, can be harvested as
a carbohydrate source as well as for starch with interesting
properties (Adeboye and Emmambux, 2017; Nyembwe et al,,
2018). No detailed information on tuber development is currently
available. A different breeding strategy may also be necessary for
identifying rapidly developing tubers for harvest as an annual
domesticated crop. This also includes a more detailed study on
variation in tuber development.

The lack of any root nodules to fix atmospheric nitrogen
in marama bean (Dakora et al,, 1999) may also have helped
evolving in a dry drought-stricken environment. The whole
genome assembly from Illumina and PacBio shotgun sequencing
has facilitated identification of the marama leghemoglobin genes.
These genes are more closely related to the non-symbiotic plant
hemoglobin genes rather than the leghemoglobin from symbiotic
legumes (Cullis, 2017) supporting an evolutionary hypothesis.
Legumes are able to form such root nodules for biological
nitrogen fixation facilitated through symbiotic interaction with
rhizobia. Although nodulation and atmospheric nitrogen fixation
provides a benefit for growth (Morgan et al., 2005), lack of both
might be a potential enhancement of drought avoidance. The
lack of root nodules avoids dependence on a nitrogen source
highly affected by drought conditions. Drought sensitivity of
nodules and the particular negative effects on the nodulation
process is well known (Serraj et al., 1999; Gil-Quintana et al.,
2013). Drought particularly affects supply of photosynthate to
nodules, required for symbiotic nitrogen fixation, and also
impairs nitrogenase activity with breakdown of the oxygen
diffusion barrier and loss of leghemoglobin (King and Purcell,
2006; Arrese-Igor et al., 2011).

MARAMA BEAN MICROBIOTA

Legumes are generally not highly dependent on atmospheric
nitrogen fixation, with both soybean and faba bean the exceptions
(Peoples et al., 2009). Legumes can use alternative organic soil
nitrogen sources. Soil nitrogen might, for example, derive from
compounds such as amino acids (Cao et al., 2016). Such amino
acids are found in the rhizosphere as a result of lysis of cells
from plants and microbes. Initial experiments to investigate the
exact type of soil-derived nitrogen for marama bean have recently
been done. Several bacteria have been so far isolated from the
rhizosphere of arid-adapted marama bean plants (Kandjimi et al.,
2015). All isolates were able to produce ammonia in plate assays.
Although ammonia released by bacteria might be a nitrogen
source, more information is required about ammonia tolerance
of the bean. Plants generally tolerate only low levels of ammonia
(Weise et al.,, 2013). The soil microbiome associated with the
bean growing in different regions of Namibia is currently being

characterized through population sequencing of the bacterial
16S, V3-V4 region and fungal ITS 1 regions. This will also
add to the initial characterization of the endophytes that can
be harbored by bean seeds potentially contributing to their
nutritional efficiency since they have a striking capacity to
harness nitrogen into seed protein (Chimwamurombe et al,
2016). Mycorrhizal fungi are further characterized in the
microbiome. These fungi can alleviate drought stress in plants
through both tolerance and avoidance mechanisms (Finlay
et al.,, 2008; Rapparini and Pefuelas, 2013). The enhancement
of tolerance of plants to water deficit by mycorrhizae may
particularly involve the regulation of drought-induced plant
genes, such as aquaporins, both by the down-regulation of genes
encoding plasma membrane aquaporins (Porcel et al.,, 2006)
or the enhanced expression of specific aquaporins (Li et al,
2012).

AREAS REQUIRING FURTHER
EXPLORATION

Knowledge about avoidance mechanisms in marama bean, but
also in other orphan legumes, is still scanty and fragmented and
requires more research efforts. Such efforts will not only further
drive marama bean breeding but also allow the identification
of any correct combination of traits and responses for better
survival of a crop in a dry drought-stricken environment.
Interesting questions are, for example, why the bean has
relatively large leaves (possibly to carry out photosynthesis in
a relatively short time) and how the bean maintains, with
large leaves, a leaf temperature allowing metabolic processes
with Rubisco activase — a key enzyme in keeping the Calvin
cycle functional - particularly heat-sensitive (Feller and Vaseva,
2014). This paradox of existence of large-leaf species in deserts,
instead of species with small leaves for better reducing any
water loss and also intercepting less radiation, is not entirely
understood. High rates of leaf transpiration likely provides a
significant cooling effect and leaf transpiration is possibly an
important trait for surviving in dry and hot environments
(Smith, 1978; Chaves et al., 2016; Lin et al., 2017). However,
whether this also applies to marama bean has still to be
shown.

A further important question is whether marama bean
can also use, in addition to drought avoidance, drought
tolerance mechanisms with expression of genes providing
cellular protection against drought exposure with better water
accumulation or can even use drought escape mechanisms
(Feller and Vaseva, 2014; Fang and Xiong, 2015; Shavrukov
et al, 2017). In this regard, the bean shows no sign of
enhanced photosynthetic water-use efficiency at the level of leaf
photosynthesis when compared with other well-characterized C3
plants. Rubisco kinetics are further consistent with adaptation
to hot, drought-prone environments (Mitchell et al., 2005).
Any transcriptomic analysis in the bean is so far also missing
to determine, for example, if, and how, genes known to
be involved in antioxidant and osmolyte production for
drought tolerance are possibly expressed (Hayat et al., 2012;
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Das and Roychoudhury, 2014). Karamanos and Travlos (2012)
found, however, already evidence for a possible progressive
osmotic adjustment being more intense in older plants. More
negative values of solute potential at zero turgor were thereby
considered as an ability of osmotic adjustment through the
production, or accumulation, of compatible osmolytes with
mobilization of osmotical substances like sugars from the
carbohydrates stored in the marama bean root. The Cullis
group has therefore recently established a genomic database
by high-throughput next-generation sequencing with data from
both short read Illumina platform as well as long read PacBio
platform. This database, a significant resource in the search for
and expression of known protective proteins, now allows the
identification and isolation of particular genes known to be
involved in drought tolerance. However, an important question
remains what benefit a drought tolerance mechanism will have to
a plant like marama bean when growing in an dry environment
exposed to lengthy drought periods and extensive heat?

A further interesting research topic will be the identification
of the actual nitrogen source for the bean. Future bioinformatic
studies should therefore also focus on other components of
the symbiotic nitrogen fixing pathway to determine whether
or not it would be possible for the bean to develop this
activity. Symbiosis-related genes might also inform on possible
pathways for other bean-microbial interactions in association
with information from soil microbiome studies, since there
are parallels in the pathways for symbiosis development and
mycorrhizal associations. Characterization of the bean’s soil
microbiome is consequently an important task, both for
nutritional and stress tolerance characters. Interrogation of the
genome database for genes necessary for nodulation should
further be directed toward identifying rhizobia initiating bean
nodulation (De Souza et al., 2015). Finding the nitrogen source(s)
for marama bean might also be of relevance for generally growing
legumes in dry drought-stricken environments where nodulation
for atmospheric nitrogen fixation is severely affected by drought
and nitrogen fertilization too costly. Future research also needs
to determine if the bean is using a single nitrogen source, such
as microbe-derived ammonia, or multiple sources including non-
microbial sources. A more detailed investigation of the marama
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