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Abstract: In many natural and managed forest and tree systems, pest attacks and related dieback events have become a 
matter of increasing global concern. Although these attacks modify the carbon balance of tree systems, their contribution 
to climate forcing and the relative impact of nature-based mitigation measures is seldom considered. Here, we assess the 
extent to which biological control protects or reconstitutes carbon sequestration capacity and storage in monoculture tree 
plantations globally. Specifically, we draw upon field-level assessments, niche modeling and forest carbon flux maps to 
quantify potential risk of carbon sequestration loss due to three globally important insect herbivores of pine and eucalyptus. 
Specifically, herbivory by the tree-feeding insects Sirex noctilio, Leptocybe invasa and Ophelimus maskelli conservatively 
reduces carbon sink capacity by up to 0.96–4.86% at the country level. For a subset of 30, 11 and nine tree-growing coun-
tries, this potentially compromises a respective 4.02%, 0.80% and 0.79% of the carbon sink capacity of their tree hosts. Yet, 
in the invasive range, released biological control agents can help regain lost sink capacity to considerable extent. Equally, 
across both the S. noctilio native and invasive range, carbon sequestration capacity is protected by resident biota to the tune 
of (max.) 0.28–0.39 tons of CO2 equivalent per hectare per year. Our exploratory valuation of pest-induced sequestration 
losses and their biodiversity-driven mitigation informs climate policy, biosecurity, and management practice.
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1	 Introduction

Natural and man-made forests represent a carbon sink equiv-
alent to up to 22% of anthropogenic emissions (IPPC 2019), 
thus assuming a critical role in the global carbon cycle and 
efforts to mitigate climate change (Pan et al. 2011). While 
natural forests’ superiority over forest plantations in terms 
of contribution to biodiversity and ecosystem services is 
well established, forest plantations are here to stay (Horak 
et al. 2019; Lewis et al. 2019; Du et al. 2022). For instance, 
nearly 45% of recent high-level forest restoration pledges 
entail the establishment of commercial tree monocultures; 
a hallmark feature of plantation forestry worldwide (Nichols 
et al. 2006; Hurley et al. 2016). Given the outlook of forest 
plantation expansion, it is critical to understand the impact of 
pests on tree health and specifically their capacity to deliver 
ecosystem services such as carbon sequestration. While 
natural forests hold larger carbon stocks per se and ensure 
stable, reliable carbon capture, short-cycle tree plantations 
exhibit higher carbon accumulation rates (Horak et al. 2019; 
Bukoski et al. 2022). Indeed, forest plantations demonstrate 
substantial carbon sequestration potential, with some systems 
storing up to 214 tonnes of C ha-1 (Kongsager et al. 2013), 
while properly managed production forests could increase 
sequestration capacity by approximately 20% (Domke et al. 
2020). Time-averaged carbon storage in planted forests can 
reach 40–80 tonnes of C ha-1 in living trees and 70–90 tonnes 
of C ha-1 in soil organic matter (Dewar & Cannell 1992), 
contributing significantly to national carbon offset goals, 
with forests and harvested wood products offsetting more 
than 14% of economy-wide CO2 emissions in some coun-
tries (Domke et al. 2020). This sequestration capacity is par-
ticularly evident in fast-growing exotics such as Eucalyptus 
spp., which sequester above-ground carbon at 127% the rate 
of native species across geographies and production contexts 
(Bukoski et al. 2022).

Coniferous tree plantations (including pine, Pinus spp.) 
cover over 80 million ha whereas eucalyptus is planted on 
22 million hectares globally (Poyry 1999). In South America 
alone, more than 5 million hectares of pine are grown 
(Medina-Torres et  al. 2022). Fiber or pulp tree plantations 
are regularly managed as short-cycle, economically-driven 
rotations (Curtis et al. 2018; Table 1), and involve cultivating 
tree species outside their native range. Thus, high biomass 
growth rates of exotic tree plantations are often ascribed to 
a so-called ‘enemy release’ hypothesis in which exotic spe-
cies thrive at their introduced locations due to an absence of 
many or all of the herbivores and pathogens that may impact 
them within their native range (Brockerhoff & Liebhold 
2017). This effect declines as the previously lost “enemies” 
(i.e., exotic pests) arrive and native herbivores expand 
their host range for instance due to climate change (Flory 
& Clay 2013; Wingfield et al. 2015; Ghelardini et al. 2017; 
Gougherty & Davies 2022). One new herbivorous insect 
species now arrives every 1.4 years in eucalyptus plantations 

worldwide (Hurley et al. 2016) and the number of pests in 
the non-native range of Eucalyptus spp. far surpasses that in 
its native range (Gougherty & Davies 2022). These involve 
various sap-suckers, defoliators, gall formers and wood bor-
ers, several of which have spread extensively since their ini-
tial detection (Hurley et al. 2016). Those pests cause diffuse 
mortality to tree plantations and compromise ecosystem ser-
vice delivery (Flower & Gonzalez-Meler 2015). In particu-
lar, non-native pests severely impact carbon accumulation 
where they benefit from ‘enemy release’ from their arthro-
pod or microbial natural enemies (Gandhi & Herms 2010).

Insects and pathogens increasingly affect tree-based 
systems and the frequency, severity and spatial coverage of 
pest-induced damage is a matter of mounting concern (Kautz 
et al. 2017; Fei et al. 2019). In the USA, forests, insect and 
disease attacks lower carbon sequestration by a respective 
69% and 28% in live trees as compared to that in plots with 
no recent disturbances (Quirion et al. 2021). Comparatively 
small sets of forest pests cause tree mortality rates on the 
order of 5.5 million tonnes (Mt) of C per year in the USA 
(Fei et  al. 2019) and threaten 1,027 Mt of live tree C in 
European forests (Seidl et al. 2018). Outbreaks of the moun-
tain pine beetle Dendroctonus ponderosae have shifted the 
forest carbon balance by up to 20 Mt of C per year in British 
Columbia, equivalent to 75% of Canada’s annual forest fire 
emissions (Kurz et al. 2008). Lastly, pathogens have recently 
led to extensive mortality of Castanea, Cercis and Tsuga tree 
genera in parts of North America (Anderson-Teixeira et al. 
2021). As such, both native and exotic pests and pathogens 
transform forest demographics, alter successional trajecto-
ries and derail carbon cycling (Millar & Stephenson 2015; 
McDowell et  al. 2020). Those impacts attain scales and 
magnitudes comparable to climate forcing, but only receive 
scant scientific attention (Flower & Gonzalez-Meler 2015) 
and have only been assessed effectively in selected temper-
ate settings.

These processes can be moderated either by restoring 
ecological balance through a scientifically guided introduc-
tion of (selective) predatory or parasitoid natural enemies 
from the native range (i.e., classical biological control; 
Hoddle 2004; Van Driesche et al. 2010; Kenis et al. 2019) 
or through the natural regulation of herbivore populations 
in their native range (i.e., natural biological control; Estes 
et al. 2011; Xu et al. 2023). Yet, even in the case of natural 
biological control, it often involves planted forests that are 
established outside of the native range. The latter process is 
particularly important as it safeguards photosynthetic capac-
ity at a planetary scale (Hairston et al. 1960). Yet, regardless 
of the critical role of tree plantations in the global carbon 
cycle, the impacts of either form of biological control on car-
bon sequestration remain unquantified.

In this study, we combine field data with ecological 
niche modeling and forest carbon flux maps to estimate the 
impact of biological control on carbon sequestration in euca-
lyptus and pine plantations. First, we identify the climatic 
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range of each tree herbivore (or ‘pest’) through maximum 
entropy modeling based upon its global occurrence records 
(Phillips et  al. 2006). Next, we overlay the boundaries of 
pine and eucalyptus plantations in selected countries (Du 
et  al. 2022) with maps of forest carbon flux (Harris et  al. 
2021). Assuming that the impacts of a given pest on carbon 
sequestration increase near linearly with its climatic suitabil-
ity (Flower & Gonzalez-Meler 2015; Koontz 2021) without 
accounting for primary host resource amounts (Root 1973) 
or environmental parameters, we estimate the possible short-
fall in carbon sequestration for each pest across its potential 
range. Lastly, we assess how either form of biological con-
trol protects or reconstitutes carbon sink capacity by con-
trasting the projected losses between areas where the pest is 
under (natural) biological control versus those where such 
option is not (yet) available. After an exhaustive discussion 
of data gaps and shortcomings in our exploratory modeling 
effort, we end by calling for increased attention to biological 
control in global forest management.

2	 Materials & methods

2.1	 Target tree-pest systems
Among the hundreds of invasive arthropod pests and patho-
gens of global tree plantations, we focus on three insect 
herbivores that are of particular interest outside of Western 
nations because of their area coverage, severity of attack and 
potential carbon impact (Table 1). The sirex wood wasp (Sirex 
noctilio F.) (Hymenoptera: Siricidae) is an invasive wood-
boring pest of pine trees native to the Palearctic. Feeding 
damage of S. noctilio larvae and an associated decay fungus 
cause extensive mortality in invaded areas (Cameron et al. 
2018; Kenis et  al. 2017b). The gall wasps Leptocybe inv-
asa Fischer & La Salle and Ophelimus maskelli (Ashmead) 
(Hymenoptera: Eulophidae) are native to Australasia, but 
have colonized eucalyptus stands on other continents since 
2000 (Hurley et  al. 2016). In affected stands, both species 

cause heavy galling, leaf curling and severe growth disrup-
tion. In their native range, all three herbivores are variably 
kept at bay through natural biological control, though com-
petition and host effects are also important. In parts of the 
invaded range, classical biological control has been exten-
sively used (Kenis et al. 2019). Classical biological control 
is especially well suited as a management option for inva-
sive pests; by restoring the ecological balance of invaded 
ecosystems, it provides long-lasting, efficacious control at 
high returns on investments (Kenis et al. 2017a). However, 
though the target herbivores and associated natural enemies 
have been comparatively well studied, there is a paucity of 
information on their implications for tree C exchange or 
storage.

2.2	 Occurrence records
Occurrence records for the three target herbivores or pests 
i.e., S. noctilio, L. invasa and O. maskeli were obtained from 
the following sources: 1) scientific publications in which 
details are provided on the geographical distribution or 
occurrence of a given species; 2) online distribution data-
bases from CAB International (CABI) and the European 
Plant Protection Organization (EPPO); 3) open-access data-
bases with species-level occurrence data from the Global 
Biodiversity Information Facility (GBIF). For S. noctilio, the 
above data were complemented with a geospatial database 
comprising 69 individual locations from the United States 
and Canada (Evans et al. 2016), in which the centroid of a 
given county was used for county-level records and point 
location were used for reports with more accurate e.g., 
county-level information. For each pest-level occurrence 
record, country, state or province data were extracted and 
the latitude/longitude records were entered into a spread-
sheet. Next, we plotted occurrence records using Google 
Map and created keyhole markup language (KML) files. We 
then visualized the (tentative) distribution of each pest based 
upon the available set of occurrence records using ArcMap 
software (ESRI, Redlands, California, USA).

Table  1.  Aboveground carbon accumulation rates and pest-induced impacts for eucalyptus and pine plantation crops. Carbon 
sequestration rates are indicated as average values (and maxima) over different rotation lengths expressed in tonnes of C ha-1 yr-1. 
For each of the tree genera, we also list the common duration of economically-driven rotations or economic lifespan. For a given 
pathogen or pest, we provide damage-related indices e.g., growth reduction, stunting, tree mortality, defoliation, field-level incidence 
that are reported in the global literature.

Tree species Carbon 
accumulation rate1

Rotation length 
(yr)2

Pest Impact indices Ref.3

Eucalyptus spp. 7.8
(max. 23.8)

5–15 Ophelimus maskeli >90% reduction in Dbh4 increment
Extensive leaf shedding

1, 2

Leptocybe invasav 7.8% reduction in Dbh increment
6.3% reduction in tree height
44.4% trees (very) severely damaged

3, 4

Pinus spp. 1.9 (max. 9.4) 10–18 Sirex noctilio Tree mortality 0.5–5.0% per year 5, 6
1 Bukoski et al. 2022. 2 Kanninen 2010. 3 References listed in Supplementary Table S1. 4 Diameter at breast height.
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2.3	 Ecological niche modeling
Climate-based niche modeling was conducted using the 
Maximum Entropy method (MAXENT; Phillips et al. 2006), 
in which climatic suitability values are generated based upon 
(pest) occurrence records, pseudo-absences and an array of 
bioclimatic variables. The Maximum Entropy model com-
pares favorably to models that use presence-only data such 
as GARP, Bioclim and Domain (Busby 1991; Carpenter 
et al. 1993; Stockwell & Peters 1999; Hernandez et al. 2006). 
More so, machine-learning toolkits such as MAXENT gen-
erally outperform some of the more established model-
ing approaches, especially where data are noisy or sparse 
(Elith et al. 2006). For the five pests, availability of limited 
(occurrence) data for cross-validation restricted the number 
of model runs to 10 iterations. An equal number of pseudo-
absence and presence records was used for each pest (Bunn 
et al. 2015; Castro-Llanos 2019).

Model development consisted of a four-step process and 
was replicated for each of the five forest pests. First, occur-
rence records for each target pest were accessed and 19 dif-
ferent bioclimatic variables, as averaged over 1970–2000, 
were drawn from the WorldClim database (version 2.1; Fick 
& Hijmans 2017). This database offers accurate, up-to-date 
climatic data including precipitation, maximum average 
and minimum temperature at a resolution of 2.5 arc minutes 
or approx. 5 km. Second, we removed any duplicates i.e., 
records that co-occurred within a 10-km distance in order 
to eliminate (spatial) bias. Third, in order to eliminate over-
fitting and thus reduce bias in the forthcoming results, we 
used the variance inflation factor (VIF) index and eliminated 
highly correlated variables (Warren & Seifert 2011). Values 
of the bioclimatic variables were extracted and those with 
high multicollinearity i.e., surpassing a threshold value of 10 
(Marquardt 1970) were identified in the correlation matrix 
and eliminated from the modeling exercise. Lastly, we 
removed any presence data with atypical climatic values that 
are possibly ascribed to faulty GPS recordings or transcrip-
tion errors.

Model development used 75% of occurrence records 
for model training and 25% of data points for validation. 
To evaluate overall model performance i.e., ability to dis-
criminate between presence and absence, we relied upon 
metrics such as the area under the curve (AUC) (Hernandez 
et  al. 2006). AUC values below 0.7 indicate poor ability 
to discriminate pest presence from randomly generated 
pseudo-absence, while a 0.7–0.9 range reflects moderate 
performance and values above 0.9 indicate high, reliable 
performance. Upon selection of a high-performing niche 
model, we assessed spatial coincidence of each pest and 
its plantation (host) tree species, either from known loca-
tions or potential ranges based on spatial modeling. Lastly, 
for each of the retained niche models and bioclimatic vari-
ables, we conducted a sensitivity analysis as per Castro-
Llanos et al. (2019).

2.4	 Pest-induced carbon sequestration loss
For the (cultivated) host tree crops of the three target pests 
i.e., fine-resolution boundaries of pine and eucalyptus plan-
tations were extracted from the Spatial Database of Planted 
Trees (SDPT) of the World Resources Institute (WRI; Harris 
et  al. 2019). This database was developed by compiling 
and synthesizing national or regional data, and provides the 
global spatial distribution of planted forests and tree crops 
with information on tree species. Although the current ver-
sion of SDPT does not cover all countries and regions of 
the world, it is gradually being optimized and expanded as 
an active database. Accessible through the Google Earth 
Engine (GEE) platform, this database is based upon a global 
map of planting years of plantations (Du et  al. 2022) and 
covers approx. 90% of plantation forests globally as com-
pared to FAO’s Forest Resources Assessment 2020 (FAO 
2020). Specifically, SDPT reports almost 264 million hect-
ares of planted forest while FAO reports 293 million hect-
ares (Jessica Richter, personal communication). For each 
target pest, plantation boundaries were thus accessed for 
multiple species, sub-species or varieties of its host trees 
e.g., Japanese black pine, Korean pine, Korean red pine, 
pitch pine, shortleaf pine, slash pine or loblolly pine for S. 
noctilio (Supplementary Table S2). Boundary selection was 
done using selection criteria and verification protocols spec-
ified by Du et  al. (2022). Boundaries were merged for all 
relevant host tree taxa and WRI classifications, and selected 
classifications were validated using aerial photography or 
panoramic street views on Google interfaces. Baseline maps 
were generated through time-series Landsat archive data 
over 1982–2020 using the LandTrendr algorithm (Du et al. 
2022), and generated as grid cells at a 30-m spatial resolu-
tion. Using the GEE platform, masks of plantation areas 
of each host tree species were then overlaid on the 30-m 
resolution carbon sink capacity (CSC) data that have been 
developed based upon global forest change data since 2000 
(Hansen et  al. 2013; Harris et  al. 2021). Emission factors, 
carbon fluxes and overall CSC estimates were derived from 
in-situ measurements of above ground biomass. Maps thus 
include carbon loss due to deforestation, carbon sequestra-
tion through tree growth and net carbon exchange (Harris 
et al. 2021).

Next, in order to estimate pest-induced changes in carbon 
exchange for a panel of five pests and four plantation tree 
crops, we entered the following equation in GEE:

𝐶𝐶𝐶𝐶𝐶𝐶 =  𝐶𝐶𝐶𝐶𝐶𝐶 − [𝐶𝐶𝐶𝐶𝐶𝐶 × 𝑆𝑆 − 𝑇𝑇
𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑇𝑇 × 𝑀𝑀𝑀𝑀] 

where CSL is the carbon sequestration loss through a pest-
induced reduction in tree growth or development; CSC is 
the carbon sink capacity or sequestration rate (tonnes of 
CO2 yr-1) based upon satellite-derived carbon flux maps as 
per Harris et al. (2021); S is the Maxent climatic suitability 
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score for a given pest at a particular location; T is the Maxent 
threshold value below which the climate is deemed unsuit-
able for the pest; and MM is maximum impact of a given 
pest on the year-by-year development or growth parameters 
of its host tree, based on estimates available in the global lit-
erature. Impact metrics – expressed as the annual percentage 
reduction in increments of trunk diameter (diameter at breast 
height; Dbh), tree height, leaf shedding or overall tree mor-
tality – differed between pests and their associated plantation 
tree species (Table 1). In particular, MM was calculated by 
multiplying maximum field-level incidence by annual pest-
inflicted tree mortality or growth reduction as per Table (1) 
without accounting for the extent to which early-season mor-
tality can be compensated through replanting. For instance, 
in young (1–3 yr old) eucalyptus plantations, the impact of 
O. maskelli and L. invasa gall-makers causes up to 92% 
growth reduction (Table  1) but heavily infested plantlets 
are routinely replaced. Hence, for this particular tree x pest 
couplet, we used a conservative measure of 1% tree mor-
tality per  annum across all tree ages. Given the challenge 
to accurately gauge the impact of some biota, those metrics 
served as proxies of the extent of pest-induced changes in 
carbon sequestration or net carbon flux for a specific plan-
tation tree species. Based upon Maxent model outputs, we 
used 0.84, 0.82 and 0.96 or 0.41, 0.40 and 0.49 as respective 
Smax or T values for S. noctilio, O. maskelli and L. invasa. We 
thereby assume that a pest such as S. noctilio (potentially) 
causes 84% mortality in areas where it attains ~100% cli-
matic suitability, this while discounting the role of resident 
competitors, predators, environmental variables or host plant 
resistance. As (locality-specific) data on intra-specific host 
susceptibility to a given pest are routinely absent, we fur-
ther assumed that all pine species irrespective of stand age, 
stocking levels or plantation management were uniformly 
susceptible to S. noctilio and all Eucalyptus species proved 
similarly susceptible to L. invasa or O. maskelli.

The above equation was implemented pixel-by-pixel 
through GEE and built upon locality-specific data on 1) com-
bined satellite-derived and ground-truthed measurements of 
carbon sequestration through tree growth in a particular plan-
tation; 2) actual presence of or climatic suitability for a given 
pest; and 3) an approximation of pest-induced reductions in 
tree growth or survival within a particular pest x tree system. 
Potential pest-induced loss in carbon sink capacity i.e., CSL 
was expressed in tonnes of CO2 per year, computed in abso-
lute and relative terms at varying spatial grain. To facilitate 
future interpretation, potential sink capacity loss was trans-
lated into more relatable terms i.e., annual emissions from 
passenger vehicles, using the Greenhouse Gas Equivalencies 
Calculator of the US Environmental Protection Agency 
(EPA).

2.5	 Biological control impacts
Lastly, we visualized the foregone or restored sink capac-
ity loss, through the action of resident natural enemies (i.e., 

natural biological control) in the pest’s native range and 
sporadically also in its invasive range, or through a (delib-
erate, fortuitous) introduction of non-native agents (i.e., 
classical biological control) in its invasive range. Here, we 
contrasted the potential CSL (on a per-area basis) between 
countries where either of the three insect herbivores is 
native or invasive, and those where it is deemed to cause 
economically-relevant losses or not e.g., due to previous or 
ongoing control efforts (Table 2). By doing so, we accounted 
for the eventual contribution of endemic parasitoids in the 
invasive range as is the case for S. noctilio in North America 
(Slippers et al. 2015). To differentiate impacts between the 
two forms of biological control, the above data were inter-
twined with country-level records on historical biological 
control introductions and the ensuing impacts of introduced 
agents (Table 2).

2.6	 Limitations of the analytical approach
Our study has limitations. First, the current plantation extent 
dataset by Du et al. (2022) lacks plantation boundary data 
for multiple key pulp-  or fiber-tree producing countries. 
Evidently, in the absence of digitized plantation maps for 
specific countries, it is impossible to gauge the local carbon 
impact of specific pests or mitigation measures. Projections 
are specifically constrained by the absence of production 
figures for pine e.g., in Canada, China, Chile, Scandinavian 
countries or Russia (Zhao et al. 2020) or for eucalyptus in 
China, Nigeria, Paraguay, the Maghreb region or the Middle 
East. Lack of such data prevents forecasting the carbon 
sequestration impact of invasive pests in unaffected planta-
tions e.g., for S. noctilio in Japan (Slippers et al. 2015) and 
may thus hamper biosecurity efforts. Our projections are 
equally constrained by an inability to geographically differ-
entiate tree growth or carbon sequestration impacts between 
a pest’s region of origin – where pest populations are kept at 
bay through the action of resident natural enemies (Hoddle 
2004)  – and its invasive range. This particularly applies 
to eucalyptus pests given the absence of plantation data 
from Australasia i.e., the native range of Eucalyptus spp. 
Additional challenges are the poor delineation of the geo-
graphic origin of most pests and the existence of multiple 
strains with varying origin, interbreeding, microbial asso-
ciates and the associated variability in growth rate or feed-
ing impact (Slippers et al. 2015; Gevers et al. 2021). Third, 
our calculations do not account for inter-  or intra-specific 
variability in tree susceptibility to pest attack (Nyeko et al. 
2007), the occasional multi-species or -hybrid mixed planta-
tions (Hurley et al. 2016) or impacts that are closely tied to 
host tree phenology. For instance, the gall-makers L. invasa 
and O. maskelli primarily affect eucalyptus in young planta-
tions or at the nursery stage (Mendel et al. 2004; Dhahri et al. 
2010). Lastly, we cannot assess how pest-host tree interplay 
is mediated by environmental parameters including climate 
change e.g., with drought or warmer temperatures routinely 
favoring pest population build-up (Gely et al. 2020; Robbins 
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et al. 2022). These environmental effects are partially mir-
rored in the 10-fold variation in S. noctilio-induced tree 
mortality between invaded settings and may engender com-
plex feedbacks through disruptions of the global carbon sink 
(Mahecha et al. 2022).

3	 Results

For  S. noctilio, O. maskelli and L. invasa, we located a 
total of 1425, 415 and 620 occurrence records, respectively 
(Fig. 1; Supplementary Table S3; Supplementary Table S4). 
Climate-niche models show good performance: AUC val-
ues ranged between 0.84 and 0.99, with the lowest values 
for L. invasa (Supplementary Fig. S1). In the best-perform-
ing models for each pest, between 6 to 9 variables were 
retained while avoiding correlated variables. Variables with 
strong relationships with pest distributions include bio_9, 
mean temperature of the driest quarter (S. noctilio); bio_14, 
precipitation of the driest month (O. maskelli), bio_19, pre-
cipitation of the driest quarter (L. invasiva) and bio_8, mean 
temperature of the wettest quarter (O. maskelli). Climatic 
suitability maps accurately reflect the global distribution of 
each pest, as indicated by its occurrence records (Fig.  1; 
Supplementary Table S3). The three best-performing mod-
els exhibited a high performance with AUC values between 
0.9 and 1, indicating that modeled presence data do not fol-

low a randomized pattern (Supplementary Fig. S1). Profile 
analysis further reveals to what extent increases in specific 
bioclimatic variables affect overall model suitability i.e., 
mirroring model robustness or sensitivity (Supplementary 
Fig. S2).

For  S. noctilio, its actual distribution corresponds with 
climate-based niche maps in most places where climates 
are moderately or highly suitable. Overall, high suitability 
is indicated at high latitudes in the USA, Canada, parts of 
the European continent, western parts of Russia and iso-
lated areas in the Americas including in southern Brazil, 
eastern Argentina, Mexico, the Caribbean and the Andes. 
For L. invasa, our best model indicates suitability in India, 
China, southern Brazil, northern Argentina and through-
out Mesoamerica. For the second eucalyptus gall-wasp, O. 
maskelli, models indicate high climatic suitability in the 
Mediterranean and Western Europe, southern parts of Africa, 
the west coast of USA and southern Australia.

Based on plantation boundaries compiled from online 
databases, our plantation maps cover 134,318 km2; 
165,200 km2 and 121,606 km2 of the primary tree hosts for S. 
noctilio, L. invasa and O. maskelli, respectively. For S. noc-
tilio, tree cover maps included data from 30 different coun-
tries worldwide. Plantation coverage data for Eucalyptus 
spp. were less comprehensive given that only 11 and nine 
countries were included in L. invasa and O. maskelli model-
ing exercises. The above pests experienced suitable condi-

Table 2.  Distributional range of the three selected forest pests, with an in-depth view onto the geographical extent and relative suc-
cess of classical biological control introductions that have been made over the past century. Only the primary biological control agents 
(BCAs) used and those that have been reported to have established in their introduced range are listed.1 Based on countries included 
in Fig. 2.2 Only the primary BCAs used and those that have been reported to have established in their introduced range are listed.3 
References listed in Supplementary Table S1.

Pest Native range of pest1 Introduced BCA2 Countries where BCAs 
introduced (intentional or 
unintentional)

Extent of pest suppression 
by BCAs in introduced 
range3

Sirex noctilio Austria, Belgium, 
Cyprus, Denmark, 
France, Germany, 
Greece, Hungary, Italy, 
Portugal, Romania, 
Serbia, Spain

Deladenus 
siricidicola, Ibalia 
leucospoides, 
Megarhyssa nortoni

Argentina, Australia, Brazil, 
Canada, Chile, China, 
Eswatini, New Zealand, South 
Africa, Uruguay, USA

– Up to 90% (New Zealand; 
Zondag 1979)
– Up to 80% (Brazil; Iede 
et al. 1998)

Leptocybe invasa Australia Quadrastichus 
mendeli, Selitrichodes 
kryceri, S. neseri

Argentina, Brazil, Cambodia, 
China, Eswatini, India, Israel, 
Italy, Laos, Malawi, Mauritius, 
Rwanda, Thailand, South 
Africa, Vietnam, Zimbabwe

– Up to 70% (South Africa; 
Gevers et al. 2021)

Ophelimus 
maskelli

Australia Closterocerus 
chamaeleon

Algeria, Argentina Chile, 
Colombia, Ethiopia, Indonesia, 
Israel, Italy, Portugal, Sicily, 
South Africa, Spain, Tunisia, 
Turkey, USA

– Mean of 41% (Israel; 
Protasov et al. 2007)
– Mean of 63% (Portugal; 
Branco et al. 2009)
– Above 65% and up to 100% 
(Sicily; Caleca et al. 2011)
– Up to 90% (South Africa; 
unpublished data)
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Fig. 1.  Climatic suitability maps for three globally important insect herbivores of tree plantations, as generated through maximum 
entropy modeling. Maps depict results of climate-based niche models for S. noctilio (A), L. invasa (B) and O. maskelli (C). Occurrence 
records for each species are overlaid on its respective suitability map, and shown with dots of varying color depending upon the exact 
data source (Supplementary Table S4). For each species, a color gradient mirrors the extent of climatic suitability up to a species-
specific maximum i.e., darkest hue.
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tions on a respective 73.9%, 51.7%, 42.3% of total plantation 
area (Table 3). In those climatically-suitable areas, pine and 
eucalyptus monocultures were estimated to sequester carbon 
at rates of 56.6, 120.3 or 27.2 million tonnes of CO2 equiva-
lent per year. Across geographies, our estimated values for 
potential pest-induced carbon sequestration loss ranged from 
0.79% for O. maskelli and 0.80% for L. invasa to 4.02% 
for S. noctilio (Table  3). For  S. noctilio, L. invasa and O. 
maskelli, the (potentially) foregone carbon sequestration in 
all territories for which plantation data were available was 
equivalent to the annual emissions of 506,461; 215,362 and 
47,771 gasoline powered passenger cars.

For most countries that have been invaded by S. noctilio, 
L. invasa or O. maskelli, classical biological control has 
reconstituted this carbon sink capacity (Fig. 2). This practice 
may have restored carbon sequestration rates by up to 0.15 
(Argentina) to 0.16 (Brazil), 0.02 (Italy) to 0.22 (Brazil), and 
0.01 (Italy) to 0.12 (Brazil) tonnes of CO2 equivalent per ha 
per year, respectively. In countries where classical biologi-
cal control remains to be implemented, carbon sequestration 
capacity could be restored to the respective tune of up to 0.09 
(India, Republic of Korea), 0.02–0.07 (Japan, Pakistan) and 
0.04–0.06 (Burundi, Rwanda) tonnes of CO2 equivalent per 
ha per year. Meanwhile, natural biological control protects 
sink capacity in the pests’ native range and ensures its partial 
reconstitution in S. noctilio affected areas of North America. 
Its impacts for S. noctilio ranged from up to 0.05 (Slovakia) 
to 0.39 tonnes (Slovenia) of CO2 equivalent per ha per year 
while no data are available from the native range of L. invasa 
and O. maskelli. Lastly, in the USA, the action of endemic 
parasitoids against the locally invasive S. noctilio protects up 
to 0.28 tonnes of CO2 equivalent per ha per year in suscep-
tible pine plantations.

4	 Discussion

Pest and pathogen outbreaks have a major impact on tree 
cover (Millar & Stephenson 2015; McDowell et al. 2020) and 
their role in climate forcing may be similar in magnitude to 
wildfire (Flower & Gonzalez-Meler 2015; Kautz et al. 2017; 
Fei et al. 2019). In this study, we provide a first approxima-
tion of the extent to which biological control offsets such 
pest-induced sequestration losses in selected plantation 
monocultures at the country level. By combining niche mod-
els with global carbon flux maps, we estimate that S. noctilio, 
L. invasa and O. maskelli lower carbon sequestration by a 
respective 2.3, 1.0 and 0.2 million tonnes CO2 equivalent 
per year in 30, 11 and nine countries. These estimates are 
conservative and lower than the carbon sink capacity losses 
due to pine beetle outbreaks in British Columbia (Kurz et al. 
2008). These potential pest-induced losses are variably offset 
through biological control (classical or natural), with a pro-
tection or reconstitution of carbon sink capacity up to 0.22–
0.39 tonnes of CO2 equivalent per ha per year across focal 
pests and geographies. Yet, given the paucity of plantation 
boundary data, our projections comprise less than 35.8% and 
55.2–75.1% of global cultivation areas for pine and eucalyp-
tus (FAO 2001). Regardless of these shortfalls, our findings 
are vital for climate policy, biosecurity, and tree plantation 
management globally – providing orders of magnitude and 
likely hotspots for reduced terrestrial carbon uptake.

Our findings emphasize the importance of ground-truth-
ing for gauging pest impacts and the efficacy of resident or 
released biological control agents. In European and North 
American forests, inventory plots have lent reliable insights 
into the scale and magnitude of pest impacts (Anderson-
Teixeira et  al. 2021; Quirion et  al. 2021), yet such fine-

Table 3.  Potential carbon sequestration loss (CSL) in plantation tree monocultures due to three insect herbivores, in the absence 
of biological control. Projections are based upon climate-based environmental suitability or impact metrics for each pest species, as 
overlaid on carbon flux maps for its primary plantation tree hosts in selected countries. Specifically, for S. noctilio, L. invasa and O. 
maskelli, carbon sequestration loss (CSL) is modeled for a respective 30, 11 and nine countries. Per herbivore species, a varying set 
of host tree taxa and classifications is included (Supplementary Table S2). For each tree-pest couplet, we report gross carbon sink 
capacity (CSC) of the host tree plantations in the absence of the pest and (absolute, relative) pest-induced CSL. Sequestration loss is 
estimated at smaller spatial grain for the three most impacted countries, though can be (partially) neutralized through biological control 
in the pests’ native or invasive range alike (Fig. 2).

Target pest Affected area
(‘000 ha)

Gross CSC  
(Gg CO2e yr-1)

Pest-induced CSL
(Gg CO2e yr-1; %)

Top countries (potential 
absolute loss; Gg CO2e/yr)

Top countries (potential 
relative loss; %)

S. noctilio 9,927 56,568 2,276 (4.02%) 1. France (1,398)
2. Spain (407)
3. Denmark (133)

1. Bosnia & Herzegovina 
(4.86%)
2. Denmark (4.81%)
3. Switzerland (4.84%)

L. invasa 8,536 120,258 967 (0.80%) 1. Brazil (749)
2. Spain (87)
3. Portugal (71)

1. Pakistan (0.96%)
2. Portugal (0.88%)
3. Argentina (0.88%)

O. maskelli 5,140 27,193 215 (0.79%) 1. Spain (81)
2. Portugal (77)
3. Brazil (27)

1. Burundi (1.01%)
2. Portugal (0.95%)
3. India (0.94%)
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grained data are absent in most other regions – constraining 
scientists’ ability to assess actual impacts (Bernal et al. 2018; 
Bukoski et al. 2022). Indeed, pests and their enemies exert 
impacts out of proportion with their individual biomass 
(Schmitz & Leroux 2020). For instance, single species of 
parasitic wasps often reduce pest infestation levels by 90% 
or even higher (Table 2). As such, ignoring their impacts in 
carbon models (Curtis et  al. 2018) and flux maps (Harris 
et al. 2021) will cause errors and uncertainties. Those may 
explain the discrepancies in (tree-based) carbon sink size 
between studies (Harris et  al. 2021). Our approach consti-
tutes a first attempt towards addressing this omission.

In monoculture plantations, monophagous pests are prone 
to affect large portions of the canopy while feeding damage 
cannot be allayed through non-host tree growth compensa-
tion (Gansner et al. 1993; Anderson-Teixeira et al. 2021). As 
a result, invasive pests thrive in these settings (Nunez-Mir 
et al. 2017) and their carbon impacts surpass those in more 
diverse forest settings. Spread prevention through quaran-
tine measures, a conservation of resident biological control 
agents or a targeted (or even pre-emptive; Avila et al. 2023; 
Hoddle 2024) introduction of effective, host-specific agents 
has benefits that require investigation. Across the devel-
oped and developing world, the active prevention of tree 
pests has only proven partially successful (Wingfield et al. 
2015) and is hampered by complex, dynamic invasion pat-
terns (Slippers et al. 2015; Garnas et al. 2016; Hurley et al. 
2016). Our niche modeling reveals how each pest can find 
suitable areas beyond its current range. For instance, while 
S. noctilio is already established in many areas, it may still 
pose a threat to certain areas of North America, the Himalaya 
and Ural mountain ranges, Western Australia, Patagonia or 
Japan. Except for eastern North America and Argentinian 
Patagonia, these projections correspond with actual outbreak 
observations and earlier modeling results (Ireland et  al. 
2018). Its arrival in those settings carries immediate societal 
implications: new incursions and actual establishment of S. 
noctilio into Chile could inflict annual losses of US$ 18–76 
per hectare and reduce economic returns of the national for-
estry sector by 2% (Allard et al. 2003). Our niche modeling 
approach should help to avert those socio-economic impacts 
by providing clear pointers on where to invest limited bud-
getary resources for pest prevention (e.g., Douma et  al. 
2017).

Reliable, fine-grained geographical distribution or 
spread maps are key to properly target investments in pest 
prevention and control. For O. maskelli and L. invasa, no 
climate niche modeling has previously been performed 
and our maps instantly inform biosecurity action includ-
ing quarantine. While L. invasa occurs throughout most of 
its suitable areas (except for the eastern USA), O. maskelli 
is primarily confined to the Mediterranean basin and East 
African highlands. For the latter pest, quarantine measures 
are warranted in Andean nations, Mexico, Argentina, Brazil 
and southern China, and can help ensure future viability of 
eucalyptus wood farming in Iran (Eskandari et  al. 2022). 

Fig.  2.  Approximate conservation or restoration of the coun-
try-level carbon sink capacity for pest-afflicted tree plantations 
through biological control. Patterns are only plotted for S. noctilio 
(A), L. invasa (B) and O. maskelli in pine- or eucalyptus-growing 
countries for which digitized plantation extent data are available. 
Carbon sink capacity (tonnes of CO2e yr-1) values are log10(x+1) 
transformed. The extent of conservation (natural biological con-
trol) or restoration (classical biological control) of carbon sink 
capacity is shown in green or orange, respectively. Potential 
pest-induced loss of sink capacity is shown in red for countries 
where the pest remains unmitigated and/or experiences suitable 
climatic conditions. In the USA, natural enemies of native siricid 
wasps impact S. noctilio to varying extent, providing some level 
of natural biological control. Lack of plantation boundary data in 
other countries prevents an accounting of pest impact measures.
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Our exercise thus guides preventative interventions to 
secure the socioeconomic, livelihood, and carbon seques-
tration role of tree plantations worldwide. Our distribution 
maps also carry value for a further delineation of invasion 
pathways, targeted deployment of novel monitoring and 
detection tools, and necessary phytosanitary measures e.g., 
on live plant movement or wood packaging material path-
ways (Slippers et al. 2015; Jactel et al. 2020; Quirion et al. 
2021). To abate pest-induced losses in carbon sink capacity, 
multiple (non-exclusive) solutions are at hand. These com-
prise cultural, chemical, and biological control and breed-
ing for host resistance (Hurley et  al. 2016; Graziosi et  al. 
2020; Panzavolta et  al. 2021). Given its human and envi-
ronmental health hazards, monetary cost, intrinsic carbon 
footprint (Wyckhuys et  al. 2022) and limitations by certi-
fication bodies such as FSC, chemical control is routinely 
discouraged in plantations. Instead, plantation managers 
favor low-carbon solutions including (natural, bred) resis-
tance and amended management that effectively harnesses 
biodiversity and natural functionalities (Hartley 2002). In 
particular, biological control has proven to be a superb, sus-
tainable solution for invasive pests (FAO 2011; Garnas et al. 
2016; Wingfield et al. 2015; Kenis et al. 2019).

Biological control provides long-lasting, non-chemical 
control of all three focal pests in many invaded settings 
through an array of resident or (often accidentally) intro-
duced mono-  or oligophagous nematodes or parasitoids 
(Protasov et al. 2007; Fischbein & Corley 2015; Slippers 
et al. 2015; Kenis et al. 2019; Hajek & Morris 2021). Our 
modeling approach clearly illuminates its contribution to 
carbon sequestration and climate change mitigation. For S. 
noctilio, pest-related losses in carbon sink capacity are 
conceivably restored through natural biological control 
in its native range. In Spanish pine forests, for example, 
most S. noctilio are contained due to the combined action 
of resident parasitoids and nematodes (Lombardero et  al. 
2016). This top-down forcing however is often discounted 
and progressively degrading due to biodiversity loss and 
the precipitous decline in consumer organisms e.g., para-
sitoids or predators (Estes et  al. 2011; Zhou et  al. 2023). 
The same applies to parts of the S. noctilio invasive range 
where introduced natural enemies have proven effective, 
for example, in New Zealand and other parts of the south-
ern hemisphere (Hurley et  al. 2007; Slippers et  al. 2015; 
Kenis et  al. 2019). Similarly, classical biological control 
restored sink capacity in L. invasa- or O. maskelli-affected 
plantations across the Mediterranean (Mendel et al. 2017). 
Where this has not yet proven successful, new (molecu-
lar) technologies could help to revisit invasive pest issues 
(Hoddle et al. 2014). Aside from the scientifically-guided 
introduction of non-native natural enemies, other forms 
of biological control can also be consciously incorporated 
into plantation management. For instance, many plantation 
estates manufacture their own antagonistic or competitive 
microbiota such as Trichoderma spp. for pest or disease 

management (Flood et al. 2022). Similarly, kaolin dusting 
offers a non-pesticidal alternative where introduced natural 
enemies only provide partial control (Lo Verde et al. 2011). 
Hence, integrating biological control with other low-carbon 
measures as part of holistic plantation management offers 
a ‘best-bet’ approach to curb invasive pest impacts without 
inflicting further environmental damage (Jactel et al. 2021; 
Prospero et al. 2021).

Lastly, our study identifies several shortcomings in the 
current plantation extent dataset and the analytical approach 
that limit the accuracy and reliability of impact projections. 
These include 1) incomplete data for key pulp- or fiber-pro-
ducing countries; 2) missing production figures for various 
tree species; 3) inability to differentiate between pest’s region 
of origin and invasive range; 4) lack of data on inter-  and 
intra-specific variability in tree susceptibility; 5) inability to 
account for mixed plantations and impact metrics tied to phe-
nology; 6) incomplete understanding of environmental inter-
action or the extent to which tree death triggers increased 
growth of surrounding trees due to increased availability of 
light and water. Further, we recognize that our assumption 
of a linear relationship between pest damage and its climatic 
suitability  – as per Flower & Gonzalez-Meler (2015) and 
Koontz (2021) – does not necessarily hold for all pests. For 
instance, S. noctilio experiences high climatic suitability and 
is readily established in eastern North America, though its 
impact is limited by the action of competing organisms, bio-
logical control agents and host tree resistance. Filling these 
knowledge gaps and resolving the other above-listed issues is 
imperative to ascertaining biotic impacts on carbon seques-
tration. It should prove fertile ground for future research. An 
upgraded plantation extent dataset complemented with well 
targeted ground-truthing e.g., tracking actual pest outbreaks 
instead of occurrences will be instrumental in generating 
more reliable, globe-encompassing projections.

Though exploratory in nature and constrained by data 
limitations, our work provides a first, global estimate of the 
extent to which biological control protects or reconstitutes 
carbon sink capacity in pests’ native and invasive range. 
Given that the critical climate regulation service of tree sys-
tems is increasingly threatened by pest attack, the potential 
of biological control as a ‘natural climate solution’ requires 
urgent recognition. To secure the carbon fixation potential of 
planted trees, this practice is to become a frontline treatment 
in global forestry and plantation management.
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Supplementary Table S1. Referencing materials on selected topics. References are organized by the 43 
following four topics: pest occurrence records, pest-specific impacts on tree growth, crop-specific 44 
carbon accumulation and rotation cycle length.  45 
 46 
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Supplementary Table S2. Tree species, subspecies or varieties for which plantation boundaries were 50 
extracted from the online Spatial Database of Planted Trees. For each target pest, we list all tree 51 
taxon classifications and their respective spatial coverage as collated from Du et al. (2022). Per tree 52 
taxon, spatial coverage (km2) is computed based upon its plantation boundaries worldwide. For each 53 
invasive pest target, tree taxa are ranked by declining spatial coverage. The below list, drawn from Du 54 
et al. (2022), certainly contains mis-classifications and several listed plant species do not act as hosts 55 
of the target pests.   56 
 57 


Target herbivore 


S. noctilio L. invasa O. maskelli 


Tree 


taxon 


Spatial 


coverage  


Tree taxon Spatial 


coverage 


Tree taxon Spatial 


coverage 


Pine 131,660 East Asian 


white birch* 


161,880 East Asian 


white birch* 


117,514 


Korean 


red 


pine 


2,616 Tasmanian 


bluegum 


3,084 Tasmanian 


bluegum 


3,622 


Korean 


pine 


28 Shining gum 117 Shining gum 463 


Slash 


pine 


11 Monterey 


pine, 


Tasmanian 


bluegum 


68 Eucalyptus, 


Grevillea, 


pine 


5 


Lobloll


y pine 


1 Eucalyptus, 


umbrella tree, 


pine 


49 Eucalyptus 1 


Shortle


af pine 


<1 Eucalyptus, 


Grevillea, pine 


1 Eucalyptus, 


Australian 


blackwood 


<1 


Pitch 


pine 


<1 Monterey 


pine, shining 


gum 


<1 Eucalyptus, 


bamboo, 


umbrella 


tree 


<1 


Japane


se 


black 


pine 


<1   Eucalyptus, 


pine, 


bamboo, 


umbrella 


tree 


<1 


  Monterey 


pine, shining 


gum 


<1 


Eucalyptus, 


cypress pine 


<1 


Eucalyptus, 


pine, alder 


<1 


Eucalyptus, 


pine, 


Australian 


blackwood 


<1 


* Presumed misclassification in the online database.  58 
 59 
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Supplementary Table S3. Global distribution records for the three forest pests as KML 61 


(keyhole markup language) files, visualized on Google Maps. The exact source and year of 62 


observation of each occurrence record is indicated.   63 


 64 


Forest pest KML file 


S. noctilio https://www.google.com/maps/d/edit?mid=10QzI6pfEVdi24B4nlVCWACZx6SLUD0g&usp=sharing 


L. invasa https://www.google.com/maps/d/edit?mid=1HcoV7t-o1JXIxjV9j0t9pXgchEk-Kc0&usp=sharing 


O. maskelli https://www.google.com/maps/d/edit?mid=1q3OjeScWnKqatlO1SdFrWVE9YS0wjP8&usp=sharing 
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Supplementary Table S4. Total number of occurrence records for each of the (three) target 67 


herbivores and their respective data sources. Individual databases include Evans (2016) for S. 68 


noctilio. References for the original scientific publications are listed in Supplementary Table S1. 69 


Further, occurrence records for each herbivore species are provided as KML files, visualized through 70 


Google Maps (Supplementary Table S2).  71 


 72 


Pest Source Total # 


records 


References 


Literature 


review 


CABI/EPPO GBIF Databases 


Sirex noctilio 47 61 364 953 1425 [6,11,12,18,22,23, 


26,28,34,36,37] 


Leptocybe 


invasa 


98 89 106 327 620 [1,2,3,4,5,12,15,16, 


19,20,24,25,27,29, 


30,31,32,33,35] 


Ophelimus 


maskelli 


56 32 327 -1 415 [7,8,9,10,12,14,17, 


21,24,27] 


1 – no data obtained from this specific source 73 
  74 







Supplementary Figure S1. Area-under-the-curve (AUC) graphs for the climate-based 75 


distribution models of the three target pests i.e., S. noctilio, L. invasa and O. maskelli. AUC 76 


graphs indicate how all models show very good performance, indicating that presence data 77 


follow a non-randomized pattern. 78 


 79 


 80 
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Supplementary Figure S2. Profile analysis for the climate-based distribution models of the 83 


three target pests i.e., S. noctilio, L. invasa and O. maskelli. For each target pest, the various 84 


graphs depict values of the different bioclimatic variables on the X-axis and the corresponding 85 


suitability values on the Y-axis as per Castro-Llanos et al. (2019).  86 
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