Detecting the severity of woodwasp, *Sirex noctilio*, infestation in a pine plantation in KwaZulu-Natal, South Africa, using texture measures calculated from high spatial resolution imagery

M. Dye, O. Mutanga* & R. Ismail
Department of Geography, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209 South Africa

This study was undertaken to determine whether image texture derived from high spatial resolution imagery could successfully predict *Sirex noctilio* infestation levels in a pine plantation forest in the eastern part of South Africa. The woodwasp, *S. noctilio*, damages trees by releasing toxic mucus into the wood during oviposition. A 50 × 50 m grid was generated over the study area and 65 cells were randomly selected. Within each cell, a 10 m circular plot was created and the level (%) of *S. noctilio* infestation was visually assessed. Using high spatial resolution imagery (0.5 m), 13 texture measures were calculated with various window sizes. Correlation tests were then performed to determine the relationship between image texture and *S. noctilio* infestation levels. Individual correlations were average in strength. Consequently, a stepwise multiple linear regression analysis was undertaken to determine whether a selection of texture images could result in a more accurate prediction of *S. noctilio* infestation levels. A strong correlation of \(r = 0.7 \) between the predicted and the observed levels of *S. noctilio* infestation using the developed multiple linear regression model showed that image texture is a promising tool for the detection, and ultimately mapping, of *S. noctilio* infestation in plantations. The result is critical for improving the management of insect infestation in plantations of South Africa.

Key words: forest health, *Sirex noctilio*, high resolution images, texture analysis.

INTRODUCTION

The woodwasp, *Sirex noctilio*, which originated in Eurasia and North Africa (USDA 2000), is causing considerable damage in the pine plantation forests of KwaZulu-Natal in South Africa (Fig. 2). Detecting and mapping the severity of damage caused by this wasp on plantation forests is an important component of an integrated management strategy that aims at reducing their devastating impact. *Sirex noctilio* was first discovered in South Africa on the Cape Peninsula in 1994. Within eight years of its discovery, it had spread 380 km along both western and eastern coasts (Tribe & Cillie 2004). By 2002, *S. noctilio* had spread into the province of KwaZulu-Natal where it is currently causing considerable damage (Tribe 2006). The female wasp drills into the tree to deposit her eggs, normally 1–3 at a time (Hoebke et al. 2005). During oviposition, the female introduces toxic mucus and the symbiotic fungus, *Amylostereum areolatum*, into the wood. When the tree’s defences are overcome, the eggs hatch and the larvae feed on the fungus while tunnelling through the wood towards the centre of the tree. The wood becomes riddled with tunnels and fungus, causing the foliage to wilt, and weaker trees may die (Zondag & Nuttall 1999). Upon reaching the heartwood, the larvae make a U-turn and pupate below the bark (Tribe 2006). The longest part of this life cycle is spent inside the host tree (Slippers et al. 2003) and the larvae eventually emerge as adults by chewing round exit holes (Carlson & Verschoor 2006). Older trees are more at risk, but if the population of *S. noctilio* is not controlled, young and healthy trees can also be affected (Forestry Tasmania 1999).

The primary control for *S. noctilio* is achieved through biological agents (Tribe & Cillie 2004). Other methods include sanitation and salvage, where infected trees are removed; and thinning where weaker trees, which are more susceptible to *S. noctilio* infestation, are felled (USDA 2000).

Successful implementation of these control methods depend on the availability of spatially explicit maps that quantify the severity and extent of infestation (Ismail et al. 2006). Remote sensing combined with groundtruth data can offer useful techniques for the measurement of forest health decline (Yuan et al. 1991; Ismail et al. 2006). Methods using remotely sensed imagery can cover very...
large areas and provide timely and accurate information on a continual basis (Yuan et al. 1991; Katsch & Vogt 1999). One approach to predicting forest health using remote sensing has been the use of spectral information such as vegetation indices (Ismail et al. 2006; Franklin et al. 2003; Haara et al. 2002). Trees under stress show a decreased canopy reflectance in the lower portion of the infrared, reduced absorption in the chlorophyll active band, and a shift in the red edge (Carter & Knapp 2001). There is spatial dependence or correlation contained in vegetation and its radiation (Atkinson et al. 1992; Mutanga & Rugege 2006). As a result, research has been undertaken on how to improve spectral analysis and develop alternatives that integrate spatial information (King 2000).

Texture analysis is one useful technique in this regard. It is a spatially based image transformation technique which enhances the relationship between neighbouring pixels in an image for accurately predicting forest health. A number of studies have used image texture analysis to quantify forest damage as a result of pest infestation. Texture analysis was used to detect sugar maple leaf decline in northeastern America. The study concluded that variations in the tree crowns as a result of health decline could be quantified through a linear model, which related the changes to the image texture (Yuan et al. 1991). Moskal & Franklin (2004) showed a strong relationship between image

<table>
<thead>
<tr>
<th>Class</th>
<th>Stage</th>
<th>Crown condition</th>
<th>Picture</th>
<th>Symptom</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Previsual</td>
<td>Healthy</td>
<td></td>
<td>No sign of S. noctilio infestation</td>
</tr>
<tr>
<td>2</td>
<td>Previsual</td>
<td>Green</td>
<td></td>
<td>Tree has been infected and resin droplets can be seen. No change in tree crown</td>
</tr>
<tr>
<td>3</td>
<td>Visual</td>
<td>Red</td>
<td></td>
<td>Tree starts to wilt and canopy colour changes to a reddish brown</td>
</tr>
<tr>
<td>4</td>
<td>Visual</td>
<td>Grey</td>
<td></td>
<td>100% needle loss. Emergence holes visible on trunk</td>
</tr>
</tbody>
</table>

Fig. 1. Stages of *Sirex noctilio* infestation (adapted from Ismail et al. 2006).
texture measures from CASI bands and defoliation severity of aspen, *Populus tremuloides* Michx. The application of this technique to quantify the visual stages of *S. noctilio* infestation (see Fig. 1) has, to our knowledge, not been previously undertaken. The aim of this study was to determine whether texture images calculated from high spatial resolution imagery (0.5 m) could accurately predict the levels of damage caused by *S. noctilio* infestation.

MATERIAL AND METHODS

Location of study area

The study area is part of the Mondi Thornham plantation (Fig. 3) and is situated in the Midlands area of KwaZulu-Natal, South Africa. The size of the study area is 356 ha and it lies at an altitude of 1500 m a.s.l. Rainfall varies between 800 mm and 1200 mm per year (Schulze et al. 1997).
Data acquisition

Very high resolution imagery (0.5 m) was obtained on 24 November 2005 by Land Resources International (LRI) using their LREye aerial image system which is composed of a series of four monochrome Sony cameras (Table 1; Ismail et al. 2006). Imagery was supplied as colour (RGB) and false colour infrared (NIR) tiles.

Field data collection

Field data collection took place within the period of image acquisition from 10 November to 30 November 2005. A 50 × 50 m grid was generated over the study area and 65 cells were randomly selected. At the centre point of each grid cell, a 10 m circular plot was created. Tree crowns located within each plot were manually identified on the high resolution imagery and subsequently located in the field using a Global Positioning System (GPS). The trees were assessed for S. noctilio infestation levels with the help of experienced foresters and technical staff. To prevent errors of commission, trees identified as red stage trees, those having a reddish brown canopy, were destructively sampled to check for the presence of S. noctilio larvae. Results from destructive sampling showed that all trees that had been identified as infested actually contained S. noctilio larvae. The level of S. noctilio infestations was calculated by measuring the percentage of infested trees from the total number of trees in the plot.

Texture analysis

Images consist of tone (spectral variation) and texture (spatial variability). Image texture is significant as it gives important information about the spatial arrangement of objects in an image (Myint & Lam 2005). Texture statistics can be divided into two classes: first-order (occurrence)

Table 1. Spectral bands from high resolution imagery used in the study.

<table>
<thead>
<tr>
<th>Band</th>
<th>Colour</th>
<th>Spectral range (nm)</th>
<th>Spatial resolution (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Blue (B)</td>
<td>450–480</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>Green (G)</td>
<td>550–580</td>
<td>0.5</td>
</tr>
<tr>
<td>3</td>
<td>Red (R)</td>
<td>650–680</td>
<td>0.5</td>
</tr>
<tr>
<td>4</td>
<td>Near infrared (NIR)</td>
<td>850–900</td>
<td>0.5</td>
</tr>
</tbody>
</table>
and second-order (co-occurrence). First-order statistics are obtained from the histogram of pixel intensities within a neighbourhood or window, but do not take into account the spatial relationship between pixels. Second-order statistics on the other hand calculate the probability that each pair of pixel values within a moving window co-occur in a given direction of distance (St-Louis et al. 2006). Second-order texture measures are calculated from the grey level co-occurrence matrix (GLCM) proposed by Haralick et al. (1973) and have become the most well-known and widely used texture features (Kayitakire et al. 2006). The co-occurrence method finds the conditional joint probabilities of all pairwise combinations of grey levels within a spatial window. The set of grey level co-occurring probabilities (GLCP) are stored in the GLCM, and statistics are applied to the matrix in order to generate texture features which are assigned to the centre pixel of the moving window (Jobanputra 2006). First-order texture measures are fast and easy to implement, while second-order measures are seen as being a better texture representation method (Yuan et al. 1991). A detailed description of the first and second-order texture variables that were used in this study are provided in Table 2. The present study uses and compares a wide range of first and second-order texture measures to assess forest damage caused by *S. noctilio* infestation.

Several window sizes may be used because smaller windows capture the textural characteristics of individual objects such as trees, while larger windows capture the textural characteristics of larger area such as forest stands (Moskal & Franklin 2001). However, this will vary according to image resolution. The most appropriate window size is often found through trial and error (Kayitakire et al. 2006). In this study, five first-order (occurrence) texture measures were calculated, namely: data range, entropy, mean, skewness, and variance. The analysis was performed using five different window sizes (3 × 3; 5 × 5; 7 × 7; 9 × 9 and 11 × 11 pixels). Eight second-order (co-occurrence) texture measures were then calculated (mean, variance, homogeneity, contrast, dissimilarity, entropy, second moment, correlation), using the same five window sizes. The texture variables were calculated in ENVI 4.3 (RSINC 2006). Once the 13 texture measures were calculated, the texture information was extracted for each sample plot (n = 65) using zonal statistics functionality in ArcGIS (ESRI 2006). Owing to the large number of mean texture variables (n = 260), the significant texture variables needed to be identified in order to simplify the modelling process.

Statistical analysis

All statistical tests were performed using Statistica 7.1 (StatSoft 2006). The Shapiro-Wilk test was used to test for normality, followed by a correlation analysis to test the relationship between texture measures and levels of *S. noctilio* infestation. The significant variables were then entered into a forward stepwise linear regression. Linear regression relates one variable to a single (simple regression) or combination (multiple regression) of variables. The multiple regression is a very popular method and is often used to predict the spatial distribution of phenomena (Guisan & Zimmermann 2000). For example, a stepwise linear regression equation was used to successfully assess hemlock decline caused by the forest pest, hemlock woolly adelgid, *Adelges tsugae* Annand, in North America (Pontius et al. 2005). Similarly, a regression model was used to determine the spatial distribution of beech-fir, *Albieti fagetum*, damage in Croatia (Bozic et al. 2006).

In this study the significant texture variables (n = 35) were entered into a forward stepwise multiple regression model to determine if *S. noctilio* infestation levels could be predicted using image texture. To avoid problems of over-fitting, the maximum number of steps in the forward stepwise regression was set at seven. This avoids unstable regression line predictions which are unlikely to recur if the experiment is repeated (Serrano et al. 2002).

RESULTS

Correlation tests were run to determine if there is a significant relationship between the calculated texture measures and *S. noctilio* infestations. The resulting correlation coefficients for both the first and second-order texture measures were average in strength. The highest correlation coefficient was 0.49 for the second-order correlation statistic in the NIR band using a 3 × 3 window size. Fig. 4 shows examples of scatterplots from the analysed data. The near infrared (NIR) band showed significant correlation with *S. noctilio* infestation. The blue band also resulted in a significant relationship with *S. noctilio* infestation, especially in
Table 2. Texture algorithms calculated from the high-resolution satellite image.

<table>
<thead>
<tr>
<th>Type of measure</th>
<th>Measure</th>
<th>Formula</th>
<th>Description</th>
<th>Example: blue band</th>
</tr>
</thead>
<tbody>
<tr>
<td>First-order</td>
<td>Entropy</td>
<td>$\sum_{i=0}^{G} p(i) \log_{2} \left[p(i) \right]$</td>
<td>Entropy is a measure of Histogram uniformly (Matekva & Str Asl i k c 1998)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Data range</td>
<td>$\max{X} - \min{X}$</td>
<td>Measures the range of the pixel data (St-Louis et al. 2006)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>$\text{AVG} = \frac{\sum_{k=1}^{K} X_{k}}{K}$</td>
<td>The mean calculates the average texture value at each plot (St-Louis et al. 2006)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Skewness</td>
<td>$\mu_{3} = \sigma_{x}^{3} \sum_{i=0}^{G} (i - \mu)^{3} p(i)$</td>
<td>Measures the skewness of the data set, if the skewness is 0 the histogram is equal about the mean (Matekva & Str Asl i k c 1998).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Variance</td>
<td>$\frac{\sum_{j=1}^{M} (X_{j} - M_{j})^{2}}{n - 1}$</td>
<td>The variance texture measure accounts for the variability of the spectral response of pixels (Trullier et al. 2009).</td>
<td></td>
</tr>
<tr>
<td>Second-order</td>
<td>Contrast</td>
<td>$\sum_{i,j=0}^{n} P_{i,j} (i - j)^{3}$</td>
<td>Contrast is a measure of the overall amount of local variation in a window (i.e., it is proportional to the range of grey levels) (Yuan et al. 1991)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dissimilarity</td>
<td>$\sum_{i,j=0}^{n}</td>
<td>P_{i,j} - j</td>
<td>^{l}$</td>
</tr>
</tbody>
</table>

Continued on p. 00

the first-order entropy and data range, and the majority of the second-order measures. The green and red bands did show some correlation with *S. noctilio* but not to the same extent as the NIR and blue bands. Window sizes are very important in a texture analysis as they detect various levels of change in image texture.

The texture variables calculated with a 3×3, 5×5, 7×7 moving window showed significant results principally in the blue and NIR bands. The measures calculated with the 9×9 and 11×11 window sizes showed significant results in all the
bands, with the highest correlations in the blue band. These results indicated that image texture is a significant indicator of *S. noctilio* infestation levels.

Regression analysis

The forward stepwise multiple regression analysis using the significant texture variables (*n* = 35) resulted in an R^2 value of 0.54 ($P \leq 0.01$).

Table 3 shows the bands, texture variables and window sizes of the significant variables used in the multiple regression equation.

The prediction accuracy of the model was calculated by plotting the observed *S. noctilio* infesta-
tion values against the predicted values from the equation. The result (Fig. 5) showed a strong correlation of $r = 0.74$ ($P < 0.01$), which indicated that the significant texture variables entered into a forward stepwise multiple regression could significantly predict the visible stages of *S. noctilio*-infestation.

The regression equation was then entered into ArcMap to create a prediction of *S. noctilio* infested trees for the entire study area and the results are presented in Fig. 6. The inserts (a) and (b) in Fig. 6 show the colour composite image and the predicted levels of infestation, respectively, following linear regression on the texture images. The

Fig. 4. Scatter plots showing significant correlations ($P < 0.05$) between texture measures and *Sirex noctilio* infestation levels. The texture variables are defined in Table 2. (Continued on page 00)
results on their own show how accurate texture measures are in predicting S. noctilio infestation as in insert (b).

DISCUSSION

Given the average correlations of individual texture measures to S. noctilio infestation, a step-wise multiple regression analysis was undertaken to determine whether a number of texture measures could have a stronger correlation with S. noctilio infestation. The multiple regression analysis resulted in an R^2 value of 0.55 ($P < 0.01$). A plot of the observed S. noctilio infestation levels against predicted values showed a correlation of 0.74 ($P < 0.01$), which meant that the regression equation...
could significantly predict the visible stages of *S. noctilio* infestation.

The results from the regression analysis indicated that the smaller window sizes (3 × 3 and 5 × 5) were significant predictors of *S. noctilio* infestation. This is perhaps due to the fact that smaller window sizes can detect subtle textural changes in individual tree crowns caused by defoliation. On the other hand, the 9 × 9 and 11 × 11 NIR variance texture variables were significant in the regression analysis. This shows that it is also necessary to consider textural changes over larger areas in order to detect variance within a stand. The results from this study indicate that it is more effective to use a variety of window sizes instead of simply using the smallest window size.

The 35 significant texture variables and the significant betas from the regression analysis were dominated by the blue and NIR bands. Leaf reflectance is determined by the concentrations of pigments such as chlorophyll and carotene. These leaf characteristics vary greatly, which in turn affects the leaf reflectance properties. Healthy plants will contain high levels of chlorophyll a and b, as well as carotene (Schmidt 2003). As tree health declines, the concentrations of pigments will decrease and this can be detected in the chlorophyll-sensitive blue band. This is why the blue band showed high correlation with *S. noctilio* infestation. The NIR band also showed strong correlation with *S. noctilio* infestation. This is because vegetation reflects highly in the NIR portion of the electromagnetic spectrum. Healthy trees will reflect more in the NIR, but as tree health

Table 3. Betas used in the forward stepwise multiple regression.

<table>
<thead>
<tr>
<th>Band</th>
<th>1st or 2nd order</th>
<th>Texture variable</th>
<th>Window size</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue</td>
<td>2nd order</td>
<td>Correlation</td>
<td>5 × 5</td>
<td>BL2COR5</td>
</tr>
<tr>
<td>NIR</td>
<td>2nd order</td>
<td>Correlation</td>
<td>3 × 3</td>
<td>NIR2COR3</td>
</tr>
<tr>
<td>NIR</td>
<td>2nd order</td>
<td>Variance</td>
<td>11 × 11</td>
<td>NIR2VAR11</td>
</tr>
<tr>
<td>Blue</td>
<td>1st order</td>
<td>Variance</td>
<td>5 × 5</td>
<td>BLVAR5</td>
</tr>
<tr>
<td>NIR</td>
<td>2nd order</td>
<td>Variance</td>
<td>9 × 9</td>
<td>NIR2VAR9</td>
</tr>
<tr>
<td>Blue</td>
<td>1st order</td>
<td>Data Range</td>
<td>3 × 3</td>
<td>BLDR3</td>
</tr>
<tr>
<td>Blue</td>
<td>2nd order</td>
<td>Entropy</td>
<td>3 × 3</td>
<td>BL2EN3</td>
</tr>
</tbody>
</table>
declines, the NIR reflectance will decrease providing a good indication of insect infestation.

Three of the seven significant texture variables from the regression analysis were variance statistics which measure the variability of the spectral response of the pixel values (Tuttle et al. 2006). Variance is successful in detecting infested trees as it picks up the subtle changes in image texture due to tree health decline. The correlation and entropy texture variables that were selected indicate the importance of the linear dependency of pixel values within a window. This is useful in clumping together pixels that share the same characteristics, for example pixels showing areas of defoliation.

In summary, the results from this study indicated that it is more effective to consider a number of texture variables which measure different levels of texture variation. Furthermore, our findings indicate that although it is generally accepted that second-order texture measures are a better texture representation method (Yuan et al. 1991), one must not overlook the value of first-order texture measures. Out of the 35 significant texture variables entered into the regression equation, 14 were first-order statistics.

In conclusion, this study has shown that first and second-order texture measures calculated from high-resolution spatial imagery can significantly predict the visual (red and grey) stages of *S. noctilio* infestation. By using a number of texture variables,
more textural information is obtained as each texture measure has its strength and will detect subtle changes that another texture measure will not.

The results offer a useful tool to forest managers in assessing the spatial occurrence and severity of S. noctilio infestations in pine plantations. The successful implementation of biological and silvicultural methods in controlling S. noctilio populations strongly depends on such a tool in quantifying the severity and extent of infestation.

REFERENCES

MUTANGA, O. & RUGEJE, D. 2006. Integrating remote sensing and spatial statistics to model herbaceous biomass distribution in a tropical savanna. Interna-

Accepted 3 July 2008