Dr Nanette Christie



Senior Researcher

Department

Biochemistry, Genetics and Microbiology
This email address is being protected from spambots. You need JavaScript enabled to view it.

I am a Senior Researcher in the Forest Molecular Genetics (FMG) programme, working towards empowering genomic breeding through data science. I am involved in various trans-disciplinary projects related to molecular breeding, statistical genomics, and systems genetics. My analytical background and training as a Bioinformaticist have led to an interest in data science and machine learning. My primary interest lies in Pine genomics, fueled by the opportunity I had to play a critical role in developing a SNP array for tropical pines in 2020. I have the privilege of working closely with our industry partners, with York Timbers, Sappi, and Mondi playing significant roles.

Our team aims to answer the following fundamental questions in tree genomics and molecular breeding: What is the extent of genetic diversity in tropical pines in South Africa? How does this genetic diversity affect tree growth, development, and defense? How can we use this information to accelerate tree improvement through genome-assisted breeding and predictive breeding? To implement genome-assisted breeding, our strategy includes the following components:

  1. Establishing a genome diversity atlas of the tropical pines planted in South Africa.
  2. Sequencing the megagenome of tropical pines to uncover growth and wood development genes.
  3. Developing genomic selection pipelines and machine learning models for predictive breeding.
  4. Integrating environmental data towards a landscape genomics model for Pinus patula.
  5. Expanding and improving TIMMBR (Tree Information Management and Molecular Breeding Resource), our database and user interface, to manage, interact with, and integrate different layers of data.

 

YouTube videos: 

Export to RIS
Publication
Candotti J, Christie N, Ployet R, Mostert-O’Neill MM, Reynolds SM, Neves LG, Naidoo S, Mizrachi E, Duong TA, Myburg AA. (2023) Haplotype mining panel for genetic dissection and breeding in Eucalyptus. The Plant Journal 113:174-185. 10.1111/tpj.16026
Jackson C, Christie N, Reynolds SM, Marais GC, Tii-kuzu Y, Caballero M, Kampman T, Visser EA, Naidoo S, Kain D, Whetten RW, Isik F, Wegrzyn J, Hodge GR, Acosta JJ, Myburg AA. (2021) A genome- wide SNP genotyping resource for tropical pine tree species. Molecular Ecology Resources 10.1111/1755-0998.13484 PDF
Berger DK, Mokgobu T, De Ridder K, Christie N, Aveling TAS. (2020) Benefits of maize resistance breeding and chemical control against northern leaf blight in smallholder farms in South Africa. South African Journal of Science 12(11) 10.17159/sajs.2020/8286
du Toit Y, Coles DW, Mewalal R, Christie N, Naidoo S. (2020) eCALIBRATOR: A Comparative Tool to Identify Key Genes and Pathways for Eucalyptus Defense Against Biotic Stressors. Frontiers in Microbiology 11:216. 10.3389/fmicb.2020.00216
Wierzbicki MP, Christie N, Pinard D, Mansfield SD, Mizrachi E, Myburg AA. (2019) A systems genetics analysis in Eucalyptus reveals coordination of metabolic pathways associated with xylan modification in wood‐forming tissues. New Phytologist 223(4):1952-1972. 10.1111/nph.15972
Naidoo S, Christie N, Acosta JJ, Mphahlele MM, Payn KG, Myburg AA, Külheim C. (2018) Terpenes associated with resistance against the gall wasp, Leptocybe invasa, in Eucalyptus grandis. Plant, Cell & Environment 41(8):1840-1851. 10.1111/pce.13323
Nardini L, Hunt RH, Dahan-Moss YL, Christie N, Christian RN, Coetzee M, Koekemoer LL. (2017) Malaria vectors in the Democratic Republic of the Congo: the mechanisms that confer insecticide resistance in Anopheles gambiae and Anopheles funestus. Malaria Journal 16(1):448. 10.1186/s12936-017-2099-y
Tobias PA, Christie N, Naidoo S, Guest DI, Külheim C. (2017) Identification of the Eucalyptus grandis chitinase gene family and expression characterization under different biotic stress challenges. Tree Physiology 37(5):565-582. 10.1093/treephys/tpx010
Mizrachi E, Verbeke L, Christie N, Fierro AC, Mansfield SD, Davis MF, Gjersing E, Tuskan GA, Van Montagu M, Van de Peer Y, Marchal K, Myburg AA. (2017) Network-based integration of systems genetics data reveals pathways associated with lignocellulosic biomass accumulation and processing. PNAS 114(5):1195-1200. 10.1073/pnas.1620119114 PDF
Christie N, Myburg AA, Joubert F, Murray SL, Carstens M, Lin Y-C, Meyer J, Crampton BG, Christensen SA, Ntuli JF, Wighard SS, Van de Peer Y, Berger DK. (2017) Systems genetics reveals a transcriptional network associated with susceptibility in the maize-gray leaf spot pathosystem. The Plant Journal 89(4):746-763. 10.1111/tpj.13419
Christie N, Tobias P, Naidoo S, Guest D, Külheim C. (2016) The Eucalyptus grandis NBS-LRR Gene Family: Physical Clustering and Expression Hotspots. Frontiers in Plant Science 6(1238)
Reeksting BJ, Coetzer N, Mahomed W, Engelbrecht J, van den Berg N. (2014) De novo sequencing, assembly, and analysis of the root transcriptome of Persea americana (Mill.) in response to Phytophthora cinnamomi and flooding. PLoS ONE 9(2):e86399. 10.1371/journal.pone.0086399 PDF
Nardini L, Christian RN, Coetzer N, Koekemoer LL. (2013) DDT and pyrethroid resistance in Anopheles arabiensis from South Africa. Parasites & Vectors 6:229. 10.1186/1756-3305-6-229
Nardini L, Christian RN, Coetzer N, Ranson H, Coetzee M, Koekemoer LL. (2012) Detoxification enzymes associated with insecticide resistance in laboratory strains of Anopheles arabiensis of different geographic origin. Parasites & Vectors 5(113)
Christian RN, Strode C, Ranson H, Coetzer N, Coetzee M, Koekemoer LL. (2011) Microarray analysis of a pyrethroid resistant African malaria vector, Anopheles funestus, from southern Africa. Pesticide Biochemistry and Physiology 99(2):140–147.
Coetzer N, Myburg AA, Berger DK. (2011) Maize microarray annotation database. Plant Methods 7(31) 10.1186/1746-4811-7-31
Coetzer N, Gazendam I, Oelofse D, Berger DK. (2010) SSHscreen and SSHdb, generic software for microarray based gene discovery: application to the stress response in cowpea. Plant Methods 6(10)